S'abonner

Assessing the precision of artificial intelligence in ED triage decisions: Insights from a study with ChatGPT - 19/03/24

Doi : 10.1016/j.ajem.2024.01.037 
Sinan Paslı a, , Abdul Samet Şahin b, Muhammet Fatih Beşer c, Hazal Topçuoğlu d, Metin Yadigaroğlu e, Melih İmamoğlu a
a Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey 
b Çarşamba State Hospital, Emergency Department, Samsun, Turkey 
c Business & Decision Life Sciences, Brussels, Belgium 
d Siirt Education & Research Hospital, Department of Emergency Medicine, Siirt, Turkey 
e Samsun University, Faculty of Medicine, Department of Emergency Medicine, Samsun, Turkey 

Corresponding author at: Karadeniz Technical University, Department of Emergency Medicine, Trabzon 61080, Turkey.Karadeniz Technical UniversityDepartment of Emergency MedicineTrabzon61080Turkey

Abstract

Background

The rise in emergency department presentations globally poses challenges for efficient patient management. To address this, various strategies aim to expedite patient management. Artificial intelligence's (AI) consistent performance and rapid data interpretation extend its healthcare applications, especially in emergencies. The introduction of a robust AI tool like ChatGPT, based on GPT-4 developed by OpenAI, can benefit patients and healthcare professionals by improving the speed and accuracy of resource allocation. This study examines ChatGPT's capability to predict triage outcomes based on local emergency department rules.

Methods

This study is a single-center prospective observational study. The study population consists of all patients who presented to the emergency department with any symptoms and agreed to participate. The study was conducted on three non-consecutive days for a total of 72 h. Patients' chief complaints, vital parameters, medical history and the area to which they were directed by the triage team in the emergency department were recorded. Concurrently, an emergency medicine physician inputted the same data into previously trained GPT-4, according to local rules. According to this data, the triage decisions made by GPT-4 were recorded. In the same process, an emergency medicine specialist determined where the patient should be directed based on the data collected, and this decision was considered the gold standard. Accuracy rates and reliability for directing patients to specific areas by the triage team and GPT-4 were evaluated using Cohen's kappa test. Furthermore, the accuracy of the patient triage process performed by the triage team and GPT-4 was assessed by receiver operating characteristic (ROC) analysis. Statistical analysis considered a value of p < 0.05 as significant.

Results

The study was carried out on 758 patients. Among the participants, 416 (54.9%) were male and 342 (45.1%) were female. Evaluating the primary endpoints of our study - the agreement between the decisions of the triage team, GPT-4 decisions in emergency department triage, and the gold standard - we observed almost perfect agreement both between the triage team and the gold standard and between GPT-4 and the gold standard (Cohen's Kappa 0.893 and 0.899, respectively; p < 0.001 for each).

Conclusion

Our findings suggest GPT-4 possess outstanding predictive skills in triaging patients in an emergency setting. GPT-4 can serve as an effective tool to support the triage process.

Le texte complet de cet article est disponible en PDF.

Keywords : Artificial intelligence, ChatGPT, Chatbot, Emergency department, Triage


Plan


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 78

P. 170-175 - avril 2024 Retour au numéro
Article précédent Article précédent
  • Lactate combined with SOFA score for improving the predictive efficacy of SOFA score in patients with severe heatstroke
  • Fujing Liu, Fang Jin, Lingling Zhang, Yun Tang, Jinhai Wang, He Zhang, Tijun Gu
| Article suivant Article suivant
  • Neurological outcomes in traffic accidents: A propensity score matching analysis of medical and non-medical origin cases of out-of-hospital cardiac arrest
  • Yumiko Miyashita, Yutaka Takei, Gen Toyama, Tsukasa Takahashi, Tetsuhiro Adachi, Kentaro Omatsu, Akane Ozaki

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.