S'abonner

Predicting cancer-specific mortality in T1/2 hepatocellular carcinoma after radiofrequency ablation by competing risk nomogram: A population-based analysis - 07/02/24

Doi : 10.1016/j.clinre.2024.102283 
Qifan He, Yue Xiong, Pengcheng Xia, Xiaoyu Yang, Yihui Yu, Zhonghua Chen
 Department of Radiology, Haining People's Hospital, Jiaxing, Zhejiang, China 

Corresponding author: Department of Radiology, Haining People's Hospital, Jiaxing, 314400, China.Department of RadiologyHaining People's HospitalJiaxing314400China

Highlights

Identification of the prognostic factors for patients with HCC undergoing RFA using the competing risk model.
Construction of a competing risk nomogram to predict the probability of cancer-specific mortality in patients with HCC undergoing RFA.
Exploration of the risk stratification based on nomogram score.

Le texte complet de cet article est disponible en PDF.

Abstract

Background

Radiofrequency ablation (RFA) is one of the primary treatment methods for T1/2 hepatocellular carcinoma (HCC), but the risk factors after RFA remain controversial. This study aims to identify the key factors associated with cancer-specific mortality (CSM) in patients with T1/2 HCC after RFA using competing risk analysis and to establish a prognostic nomogram for improved clinical management.

Methods

A total of 2,135 T1/2 HCC patients treated with RFA were obtained from the Surveillance, Epidemiology, and End Results (SEER) database and randomly categorized into training and validation sets. Univariate and multivariable competing risk analyses were performed to identify risk factors associated with CSM and construct a competing risk nomogram. Receiver operating characteristic (ROC) curves, concordance indices (C-indexes), calibration plots, and decision curve analysis (DCA) were conducted to evaluate the predictive efficiency and clinical applicability of the nomogram in the training and validation sets. Patients were stratified according to their nomogram score, and the different risk groups were compared using cumulative incidence function (CIF) curves and Gray's validation .

Results

The 5-year CSM rate for HCC patients treated with RFA was 30.1 %. Grade, tumor size, tumor number, cirrhosis, and AFP level were identified as independent risk factors for CSM. A prognostic nomogram was developed based on these risk factors. The time-dependent C-indexes (0.65) were greater than those of the AJCC stage model (0.55) during the 12 to 60 months of follow-up. The calibration plots of the competing risk nomograms demonstrated excellent consistency between actual survival and nomogram predictions. ROC analyses showed that the 1-, 3-, and 5-year AUC values in both the training and validation cohorts were all greater than 0.63 and exceeded those of the AJCC stage model. DCA demonstrated the clinical usefulness of the nomogram. Patients were classified into low-, moderate-, and high-risk groups based on the nomogram scores, with the high-risk group showing significantly higher CSM rates after RFA compared to the other two groups.

Conclusions

We identified Grade, AFP, cirrhosis, tumor size, and tumor number as independent risk factors associated with CSM. The competing risk nomogram exhibited high performance in predicting the probability of CSM for HCC patients undergoing RFA.

Le texte complet de cet article est disponible en PDF.

Keywords : Hepatocellular carcinoma, Radiofrequency ablation, Cancer-specific mortality, Competing risk model, Cumulative incidence, Nomogram

Abbreviations : SEER, HCC, RFA, AJCC, CSM, OCM, SHR, CI, C-index, ROC, AUC, DCA, CID, CIF


Plan


© 2024  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 48 - N° 2

Article 102283- février 2024 Retour au numéro
Article précédent Article précédent
  • Association of composite dietary antioxidant index and muscle mass in individuals with metabolic associated fatty liver disease
  • Jing Guo, Lin Shi, Yan Sun
| Article suivant Article suivant
  • Development and validation of a novel nomogram model to assess the risk of gastric contents in outpatients undergoing elective sedative gastrointestinal endoscopy procedures
  • Yuqing Yan, Yuzhan Jin, Yuanyuan Cao, Chen Chen, Xiuxiu Zhao, Huaming Xia, Libo Yan, Yanna Si, Jianjun Zou

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.