Prognostic Value of Four Preimplantation Malnutrition Estimation Tools in Predicting Heart Failure Hospitalization of the Older Diabetic Patients with Right Ventricular Pacing - 18/01/24

Doi : 10.1007/s12603-023-2042-6 
B. Fu 1, *, Y. Yu 1, *, S. Cheng 1, H. Huang 1, T. Long 1, J. Yang 1, M. Gu 1, C. Cai 1, X. Chen 1, H. Niu 1, Wei Hua 1
1 Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Bei Li Shi Rd, Xicheng District, 100037, Beijing, China 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Objectives

The prognostic value of preimplantation nutritional status is not yet known for older diabetic patients that received right ventricular pacing (RVP). The study aimed to investigate the clinical value of the four malnutrition screening tools for the prediction of heart failure hospitalization (HFH) in older diabetic patients that received RVP.

Design

Retrospective observational cohort study.

Setting and Participants

This study was conducted between January 2017 and January 2018 at the Fuwai Hospital, Beijing, China, and included older (age ≥ 65 years) diabetic patients that received RVP for the first time

Measurements

The Prognostic Nutritional Index (PNI), Geriatric Nutritional Risk Index (GNRI), Naples Prognostic Score (NPS), and the Controlling Nutritional Status (CONUT) score were used to estimate the preimplantation nutritional status of the patients. Univariate and multivariate Cox proportional hazard regression analyses were performed to investigate the association between preimplantation malnutrition and HFH.

Results

Overall, 231 older diabetic patients receiving RVP were included. The median follow-up period after RVP was 53 months. HFH was reported for 19.9% of the included patients. Our results showed preimplantation malnutrition for 18.2%, 15.2%, 86.6% and 66.2% of the included patients based on the PNI, GNRI, NPS, and CONUT score, respectively. The cumulative rate of HFH during follow-up period was significantly higher for patients in the preimplantation malnutrition group based on the PNI (log-rank = 13.0, P = 0.001), GNRI (log-rank = 8.5, P = 0.01), and NPS (log-rank = 15.7, P < 0.001) compared to the normal nutrition group, but was not statistically significant for those in the preimplantation malnutrition group based on the CONUT score (log-rank = 2.7, P = 0.3). As continuous variables, all the nutritional indices showed significant correlation with HFH (all P < 0.05). However, multivariate analysis showed that only GNRI was independently associated with HFH (HR = 0.97, 95% CI: 0.937–0.997, P = 0.032). As categorical variables, PNI, GNRI, and NPS showed significant correlation with HFH. After adjustment of confounding factors, moderate-to-severe degree of malnutrition was an independent predictor of HFH based on the PNI (HR = 4.66, 95% CI: 1.03-21.00, P = 0.045) and GNRI (HR = 3.02, 95% CI: 1.02-9.00, P = 0.047).

Conclusion

Preimplantation malnutrition was highly prevalent in older diabetic patients that received RVP. The malnutrition prediction tools, PNI and GNRI, showed significant prognostic value in accurately predicting HFH in older diabetic patients with RVP.

Le texte complet de cet article est disponible en PDF.

Key words : Nutritional index, older, diabetes, right ventricular pacing


Plan


© 2023  © 2023 THE AUTHORS. Published by Springer-Verlag International SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 27 - N° 12

P. 1262-1270 - décembre 2023 Retour au numéro
Article précédent Article précédent
  • The Impact of Hypoalbuminemia on Postoperative Complications in Patients Undergoing Shoulder Arthroplasty: A Meta-Analysis
  • R. Llombart, Gonzalo Mariscal, C. Barrios, J.E. de la Rubia Ortí, R. Llombart-Ais
| Article suivant Article suivant
  • Intensive Weight-Loss Lifestyle Intervention Using Mediterranean Diet and COVID-19 Risk in Older Adults: Secondary Analysis of PREDIMED-Plus Trial
  • Sangeetha Shyam, J.F. García-Gavilán, I. Paz-Graniel, J.J. Gaforio, M.Á. Martínez-González, D. Corella, J.A. Martínez, Á.M. Alonso-Gómez, J. Wärnberg, J. Vioque, D. Romaguera, J. López-Miranda, R. Estruch, F.J. Tinahones, J. Lapetra, J.L. Serra-Majem, A. Bueno-Cavanillas, J.A. Tur, V. Martín Sánchez, X. Pintó, P. Matía-Martín, J. Vidal, M. del Mar Alcarria, L. Daimiel, E. Ros, F. Fernandez-Aranda, S.K. Nishi, Ó. García-Regata, R. Perez Araluce, E.M. Asensio, O. Castañer, A. Garcia-Rios, A. Oncina-Cánovas, C. Bouzas, M.A. Zulet, E. Rayó, R. Casas, S. Martin-Pelaez, L. Tojal-Sierra, M.R. Bernal-López, S. Carlos, J.V. Sorlí, A. Goday, P.J. Peña-Orihuela, A. Pastor-Morel, S. Eguaras, M.D. Zomeño, M. Delgado-Rodríguez, N. Babio, M. Fitó, Jordi Salas-Salvadó

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.