S'abonner

Can artificial intelligence help decision-making in arthroscopy? Part 2: The IA-RTRHO model – a decision-making aid for long head of the biceps diagnoses in small rotator cuff tears - 29/11/23

Doi : 10.1016/j.otsr.2023.103652 
Rayane Benhenneda a, , Thierry Brouard b, Christophe Charousset c, Julien Berhouet a, b

The Francophone Arthroscopy Society (SFA)15, rue Ampère, 92500 Rueil-Malmaison, France

a Service de chirurgie orthopédique, hôpital Trousseau, CHRU de Tours, faculté de médecine, université de Tours, Centre-Val-de-Loire, France 
b LIFAT (EA6300), école polytechnique universitaire de Tours, 64, avenue Jean-Portalis, 37200 Tours, France 
c Clinique Turin, 9, rue de Turin, 75008 Paris, France 

Corresponding author at: Service de chirurgie orthopédique, hôpital Trousseau, CHRU de Tours, faculté de médecine, université de Tours, avenue de la République, Chambray-lès-Tours, 37044 Tours cedex 9, France.Service de chirurgie orthopédique, hôpital Trousseau, CHRU de Tours, faculté de médecine, université de Toursavenue de la République, Chambray-lès-ToursTours cedex 937044France

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Introduction

The possible applications of artificial intelligence (AI) in orthopedic surgery are promising. Deep learning can be utilized in arthroscopic surgery due to the video signal used by computer vision. The intraoperative management of the long head of biceps (LHB) tendon is the subject of a long-standing controversy. The main objective of this study was to model a diagnostic AI capable of determining the healthy or pathological state of the LHB on arthroscopic images. The secondary objective was to create a second diagnostic AI model based on arthroscopic images and the medical, clinical and imaging data of each patient, to determine the healthy or pathological state of the LHB.

Hypothesis

The hypothesis of this study was that it was possible to construct an AI model from operative arthroscopic images to aid in the diagnosis of the healthy or pathological state of the LHB, and its analysis would be superior to a human analysis.

Materials and methods

Prospective clinical and imaging data from 199 patients were collected and associated with images from a validated protocoled arthroscopic video analysis, called “ground truth”, made by the operating surgeon. A model based on a convolutional neural network (CNN) modeled via transfer learning on the Inception V3 model was built for the analysis of arthroscopic images. This model was then coupled to MultiLayer Perceptron (MLP), integrating clinical and imaging data. Each model was trained and tested using supervised learning.

Results

The accuracy of the CNN in diagnosing the healthy or pathological state of the LHB was 93.7% in learning and 80.66% in generalization. Coupled with the clinical data of each patient, the accuracy of the model assembling the CNN and MLP were respectively 77% and 58% in learning and in generalization.

Conclusion

The AI model built from a CNN manages to determine the healthy or pathological state of the LHB with an accuracy rate of 80.66%. An increase in input data to limit overfitting, and the automation of the detection phase by a Mask-R-CNN are ways of improving the model. This study is the first to assess the ability of an AI to analyze arthroscopic images, and its results need to be confirmed by further studies on this subject.

Level of evidence

III Diagnostic study.

Le texte complet de cet article est disponible en PDF.

Keywords : Arthroscopy, Artificial intelligence, Convolutional neural network, Long head of biceps, Deep learning


Plan


© 2023  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 109 - N° 8S

Article 103652- décembre 2023 Retour au numéro
Article précédent Article précédent
  • Can artificial intelligence help decision-making in arthroscopy? Part 1: Use of a standardized analysis protocol improves inter-observer agreement of arthroscopic diagnostic assessments of the long head of biceps tendon in small rotator cuff tears
  • Rayane Benhenneda, Thierry Brouard, Franck Dordain, François Gadéa, Christophe Charousset, Julien Berhouet, Francophone Arthroscopy Society (SFA)
| Article suivant Article suivant
  • Methods to analyse the long head of the biceps in the management of distal ruptures of the supraspinatus tendon. Part 1: the concept of the “biceps box”: dynamic rotator interval approach. Incidence of lesions of the long head of the biceps tendon
  • François Gadéa, Franck Dordain, Johan Merbah, Christophe Charousset, Julien Berhouet, the Francophone Arthroscopy Society (SFA)

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.