Photobac derived from bacteriochlorophyll-a shows potential for treating brain tumor in animal models by photodynamic therapy with desired pharmacokinetics and limited toxicity in rats and dogs - 11/11/23
Abstract |
Photobac is a near infrared photosensitizer (PS) derived from naturally occurring bacteriochlorophyll- a, with a potential for treating a variety of cancer types (U87, F98 and C6 tumor cells in vitro). The main objective of the studies presented herein was to evaluate the efficacy, toxicity and pharmacokinetic profile of Photobac in animals (mice, rats and dogs) and submit these results to the United States Food and Drug Administration (US FDA) for its approval to initiate Phase I human clinical trials of glioblastoma, a deadly cancer disease with no long term cure. The photodynamic therapy (PDT) efficacy of Photobac was evaluated in mice subcutaneously implanted with U87 tumors, and in rats bearing C6 tumors implanted in brain. In both tumor types, the Photobac-PDT was quite effective. The long-term cure in rats was monitored by magnetic resonance imaging (MRI) and histopathology analysis. A detailed pharmacology, pharmacokinetics and toxicokinetic study of Photobac was investigated in both non-GLP and GLP facilities at variable doses following the US FDA parameters. Safety Pharmacology studies suggest that there is no phototoxicity, cerebral or retinal toxicity with Photobac. No metabolites of Photobac were observed following incubation in rat, dog, mini-pig and human hepatocytes. Based on current biological data, Photobac-IND received the approval for Phase-I human clinical trials to treat Glioblastoma (brain cancer), which is currently underway at our institute. Photobac has also received an orphan drug status from the US FDA, because of its potential for treating Glioblastoma as no effective treatment is currently available for this deadly disease.
Le texte complet de cet article est disponible en PDF.Graphical Abstract |
Abbreviation : PS, PDT, GLP, GMP, TIF, PK, TK, MRSD
Keywords : Photosensitizer, Photodynamic Therapy, Glioblastoma, Pharmacology, Pharmacokinetic and Toxicokinetic, Cmax: Maximum concentration, AUC: Area under the curve
Plan
Vol 168
Article 115731- décembre 2023 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?