S'abonner

Diagnostic performance of a novel automated CT-derived FFR technology in detecting hemodynamically significant coronary artery stenoses: A multicenter trial in China - 11/10/23

Doi : 10.1016/j.ahj.2023.08.009 
Yaodong Ding, MD a, Quan Li, MD a, QiLiang Chen, MD, PhD b, Yida Tang, MD c, Haitao Zhang, MD d, Yong He, MD e, Guosheng Fu, MD f, Qing Yang, MD g, Xiling Shou, MD h, Yicong Ye, MD a, Xiliang Zhao, MD a, Yang Zhang, MD a, Yu Li, MD a, Xiaoling Zhang, MD a, Changyan Wu, MD a, Rui Wang, MD i, Lei Xu, MD i, Ren Zhang, MD j, Alan Yeung, MD k, Yong Zeng, MD a, 1 , Xiang Qian, MD, PhD b, 1,
a Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 
b Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 
c Department of Cardiology, Peking University Third Hospital, Beijing, China 
d Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China 
e Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China 
f Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China 
g Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China 
h Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi, China 
i Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 
j Department of Cardiology, Hendrick Medical Center, Abilene, TX 
k Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 

Reprint requests: Xiang Qian, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, 94305Department of Anesthesiology, Perioperative and Pain MedicineStanford UniversityStanfordCA94305

Résumé

Background and aims

Computed tomography-derived fractional flow reserve (CT-derived FFR) algorithms have emerged as promising noninvasive methods for identifying hemodynamically significant coronary artery disease (CAD). However, its broad adaption is limited by the complex workflow, slow processing, and supercomputer requirement. Therefore, CT-derived FFR solutions capable of producing fast and accurate results could help deliver time-sensitive results rapidly and potentially alter patient management. The current study aimed to determine the diagnostic performance of a novel CT-derived FFR algorithm, esFFR, on patients with CAD was evaluated.

Methods

329 patients from 6 medical centers in China were included in this prospective study. CT-derived FFR calculations were performed on 350 vessels using the esFFR algorithm using patients’ presenting coronary computed tomography angiography (CCTA) images, and results and processing speed were recorded. Using invasive FFR measurements from direct coronary angiography as the reference standard, the diagnostic performance of esFFR and CCTA in detecting hemodynamically significant lesions were compared. Post-hoc analyses were performed for patients with calcified lesions or stenoses within the CT-derived FFR diagnostic “gray zone.”

Results

The esFFR values correlated well with invasive FFR. The sensitivity, specificity, accuracy, positive and negative predictive value for esFFR were all above 90%. The overall performance of esFFR was superior to CCTA. Coronary calcification had minimal effects on esFFR's diagnostic performance. It also maintained 85% of diagnostic accuracy for “gray zone” lesions, which historically was <50%. The average esFFR processing speed was 4.6 ± 1.3 minutes.

Conclusions

The current study demonstrated esFFR had high diagnostic efficacy and fast processing speed in identifying hemodynamically significant CAD.

Le texte complet de cet article est disponible en PDF.

Plan


© 2023  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 265

P. 180-190 - novembre 2023 Retour au numéro
Article précédent Article précédent
  • Temporal trends in cardiovascular outcomes and costs among patients with type 2 diabetes
  • Brent A. Williams, Jigar Rajpura, Yurek M. Paprocki, Neela Kumar, Stephen Voyce, Jonathan P. Brady, Alexander Chang
| Article suivant Article suivant
  • Prediction of early death after atrial fibrillation diagnosis using a machine learning approach: A French nationwide cohort study
  • Arnaud Bisson, Yassine Lemrini, Giulio Francesco Romiti, Marco Proietti, Denis Angoulvant, Sidahmed Bentounes, Wahbi El-Bouri, Gregory Y.H. Lip, Laurent Fauchier

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.