Is All-on-four effective in case of partial mandibular resection? A 3D finite element study - 15/09/23
Abstract |
Introduction |
The aim of the work is to analyze stress distribution on 3D Finite Element (FE) models at bone, implant, and framework level of different designs for fixed implant-supported prostheses in completely edentulous patients, comparing results on whole and partially resected mandibles.
Materials and methods |
3D anisotropic FE models of a whole and of a partially resected mandible were created using a TC scan of a cadaver's totally edentulous mandible. Two types of totally implant-supported rehabilitation were simulated, with four implants: parallel fixtures on whole mandible and on resected mandible, All-on-four-configured fixtures on whole mandible and on partially resected mandible. A superstructure comprising only metal components of a prosthetic framework were added, while stress distribution and its maximum values were analyzed at bone, implant, and superstructure level.
Results |
The results highlight that:
(1) implant stresses are greater on the whole mandible than on the resected one;
(2) framework and cancellous-bone stresses are comparable in all cases;
(3) on the resected mandible, maximum stress levels at the cortical-bone/implant interface are higher than in whole-mandible rehabilitation. The opposite applies for maximum stresses on external cortical bone, measured radially with respect to the implant from the point of maximum stress at the interface.
Discussion |
On the resected mandible, All-on-four configuration proved biomechanically superior to parallel implants considering radial stresses on implants and cortical bone. Still, maximum stresses increase at the bone/implant interface. A design with four parallel implants minimizes the stress on a resected mandible while, on the whole mandible, the All-on-four rehabilitation proves superior at all levels (bone, implant, and framework).
Le texte complet de cet article est disponible en PDF.Keywords : Prosthesis implantation, Biomechanics, Mechanical stress
Plan
Vol 124 - N° 5
Article 101463- octobre 2023 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?