S'abonner

CTANet: Confidence-Based Threshold Adaption Network for Semi-Supervised Segmentation of Uterine Regions from MR Images for HIFU Treatment - 25/05/23

Doi : 10.1016/j.irbm.2022.100747 
C. Zhang a, b, c, G. Yang a, b, c, F. Li d, Y. Wen e, Y. Yao a, b, c, H. Shu a, b, c, d, , A. Simon c, f, J.-L. Dillenseger c, f, J.-L. Coatrieux c, f
a LIST, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210096, China 
b Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China 
c Centre de Recherche en Information Biomédicale Sino-Français (CRIBs), Rennes, F-35000, France 
d State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China 
e National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China 
f Univ Rennes, Inserm, LTSI-UMR1099, Rennes, F-35000, France 

Corresponding author at: Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China.Jiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingSoutheast UniversityNanjing210096China

Abstract

Objectives

The accurate preoperative segmentation of the uterus and uterine fibroids from magnetic resonance images (MRI) is an essential step for diagnosis and real-time ultrasound guidance during high-intensity focused ultrasound (HIFU) surgery. Conventional supervised methods are effective techniques for image segmentation. Recently, semi-supervised segmentation approaches have been reported in the literature. One popular technique for semi-supervised methods is to use pseudo-labels to artificially annotate unlabeled data. However, many existing pseudo-label generations rely on a fixed threshold used to generate a confidence map, regardless of the proportion of unlabeled and labeled data.

Materials and Methods

To address this issue, we propose a novel semi-supervised framework called Confidence-based Threshold Adaptation Network (CTANet) to improve the quality of pseudo-labels. Specifically, we propose an online pseudo-labels method to automatically adjust the threshold, producing high-confident unlabeled annotations and boosting segmentation accuracy. To further improve the network's generalization to fit the diversity of different patients, we design a novel mixup strategy by regularizing the network on each layer in the decoder part and introducing a consistency regularization loss between the outputs of two sub-networks in CTANet.

Results

We compare our method with several state-of-the-art semi-supervised segmentation methods on the same uterine fibroids dataset containing 297 patients. The performance is evaluated by the Dice similarity coefficient, the precision, and the recall. The results show that our method outperforms other semi-supervised learning methods. Moreover, for the same training set, our method approaches the segmentation performance of a fully supervised U-Net (100% annotated data) but using 4 times less annotated data (25% annotated data, 75% unannotated data).

Conclusion

Experimental results are provided to illustrate the effectiveness of the proposed semi-supervised approach. The proposed method can contribute to multi-class segmentation of uterine regions from MRI for HIFU treatment.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

We proposed a semi-supervised segmentation network, CTANet, to segment uterine regions from MR Images for HIFU Treatment. It consists of a Pretrained Segmentation Network (PSN) and a Fine Segmentation Network (FSN). The highlights of the network include 1) We adopted a Confidence-based Threshold Adaptation (CTA) module to generate the high-quality pseudo labels without offline selection; 2) The Hidden Mixup loss is used to improve the generalization performance of the model.

Le texte complet de cet article est disponible en PDF.

Highlights

Generating high-confidence maps for pseudo-labels.
Improving the model at different ratios of annotated and unannotated data volumes.
Improving the generalization under different patient data distribution.
The first work focuses on the semi-supervised segmentation of the uterus.

Le texte complet de cet article est disponible en PDF.

Keywords : HIFU therapy, Semi-supervised segmentation, Threshold-adaptation, Uterine fibroids


Plan


© 2022  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 44 - N° 3

Article 100747- juin 2023 Retour au numéro
Article précédent Article précédent
  • Editorial Board
| Article suivant Article suivant
  • Five-Year Prognosis Model of Esophageal Cancer Based on Genetic Algorithm Improved Deep Neural Network
  • J. Sun, Q. Liu, Y. Wang, L. Wang, X. Song, X. Zhao

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.