S'abonner

Potassium channels, tumorigenesis and targeted drugs - 29/04/23

Doi : 10.1016/j.biopha.2023.114673 
Cong Xia a, Can Liu b, c, Shuangyi Ren a, Yantao Cai b, Qianshi Zhang a, , Chenglai Xia b, c,
a Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China 
b Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China 
c School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China 

Corresponding author.⁎⁎Corresponding author at: Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China.Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical UniversityFoshanGuangdong Province528099China

Abstract

Potassium channels play an important role in human physiological function. Recently, various molecular mechanisms have implicated abnormal functioning of potassium channels in the proliferation, migration, invasion, apoptosis, and cancer stem cell phenotype formation. Potassium channels also mediate the association of tumor cells with the tumor microenvironment. Meanwhile, potassium channels are important targets for cancer chemotherapy. A variety of drugs exert anti-cancer effects by modulating potassium channels in tumor cells. Therefore, there is a need to understand how potassium channels participate in tumor development and progression, which could reveal new, novel targets for cancer diagnosis and treatment. This review summarizes the roles of voltage-gated potassium channels, calcium-activated potassium channels, inwardly rectifying potassium channels, and two-pore domain potassium channels in tumorigenesis and the underlying mechanism of potassium channel-targeted drugs. Therefore, the study lays the foundation for rational and effective drug design and individualized clinical therapeutics.

Le texte complet de cet article est disponible en PDF.

Graphical Abstract




 : 

Structure of potassium channels and targeting drugs in cancer. The Kv/IK/SK channel has six transmembrane helices (S1–S6) with a pore helix (P) between segments S5 and S6. The first four helices (S1–S4) form the voltage-sensing domain. The last two helices (S5–S6) form the pore domain. Blockers of the Kv channel include 4-aminopyridine, quinidine, tetraethylammonium, amiodarone, FS48 protein, KAaH 1, mevastatin, simvastatin, acacetin, chrysin, psoralen derivatives, blood-depressing substances, astemizole, chloroquine, new diarylamine, procyanidin B1, tetrandrine, nutlin-3, and berberine. Blockers of IK channels include clotrimazole, triarylmethane-34, senicapo, vigabatrin, and piperine. The transmembrane helices of the BK channel contain an extra transmembrane helix called S0. The voltage-sensing domain of the BK channel is mainly composed of helices S1–S4 and the S5–S6 helices constitute the pore domain. Blockers of BK channels include paxilline, tetraethylammonium, iberiotoxin, and penitrem A. Kir channels have only two transmembrane segments called the outer helix (M1) and the inner helix (M2). Kir channels form tetramers, where M2 contributes to the pore domain. Amiodarone and glibenclamide are blockers of the Kir channel, and minoxidil is an activator of the Kir channel. The K2P channel has four transmembrane segments (M1-M4), two pore helices (P1 and P2), and a unique extracellular cap structure (cap helices C1 and C2). The first pore domain includes M1, C1, C2, P1, and M2. The second pore domain includes M3, P2, and M4. Withaferin A is a blocker of the K2P channel.


Structure of potassium channels and targeting drugs in cancer. The Kv/IK/SK channel has six transmembrane helices (S1–S6) with a pore helix (P) between segments S5 and S6. The first four helices (S1–S4) form the voltage-sensing domain. The last two helices (S5–S6) form the pore domain. Blockers of the Kv channel include 4-aminopyridine, quinidine, tetraethylammonium, amiodarone, FS48 protein, KAaH 1, mevastatin, simvastatin, acacetin, chrysin, psoralen derivatives, blood-depressing substances, astemizole, chloroquine, new diarylamine, procyanidin B1, tetrandrine, nutlin-3, and berberine. Blockers of IK channels include clotrimazole, triarylmethane-34, senicapo, vigabatrin, and piperine. The transmembrane helices of the BK channel contain an extra transmembrane helix called S0. The voltage-sensing domain of the BK channel is mainly composed of helices S1–S4 and the S5–S6 helices constitute the pore domain. Blockers of BK channels include paxilline, tetraethylammonium, iberiotoxin, and penitrem A. Kir channels have only two transmembrane segments called the outer helix (M1) and the inner helix (M2). Kir channels form tetramers, where M2 contributes to the pore domain. Amiodarone and glibenclamide are blockers of the Kir channel, and minoxidil is an activator of the Kir channel. The K2P channel has four transmembrane segments (M1-M4), two pore helices (P1 and P2), and a unique extracellular cap structure (cap helices C1 and C2). The first pore domain includes M1, C1, C2, P1, and M2. The second pore domain includes M3, P2, and M4. Withaferin A is a blocker of the K2P channel.ga1

Le texte complet de cet article est disponible en PDF.

Highlights

Potassium channels play an important role in tumorigenesis.
Potassium channels are involved in tumor proliferation, metastasis, and apoptosis through multiple molecular pathways.
Drugs exert anticancer effects by targeting potassium channels.

Le texte complet de cet article est disponible en PDF.

Abbreviations : AKT, Bcl-2, Bcl-xl, ERK, KCa, KCa 1.1/BK, KCa 3.1/IK, KCNJ, KCNK, KCNN, Kir, Kv, K2P, MAPK, MEK, NF-κB, PI3K, SK, VGKC

Keywords : Potassium channel, Tumor, Targeted drugs, Molecular mechanism, Antitumor therapy


Plan


© 2023  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 162

Article 114673- juin 2023 Retour au numéro
Article précédent Article précédent
  • The spectrum of cell death in sarcoma
  • Elizaveta Belyaeva, Nina Loginova, Brett A. Schroeder, Ian S. Goldlust, Arbind Acharya, Sandeep Kumar, Peter Timashev, Ilya Ulasov
| Article suivant Article suivant
  • Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges
  • Chunyan Duan, Mingjia Yu, Jiyuan Xu, Bo-Yi Li, Ying Zhao, Ranjith Kumar Kankala

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.