S'abonner

Bias-force guided simulations combined with experimental validations towards GPR17 modulators identification - 26/02/23

Doi : 10.1016/j.biopha.2023.114320 
Sana Kari a, Akshaya Murugesan a, Ramesh Thiyagarajan b, Srivatsan Kidambi c, Jamoliddin Razzokov d, e, f, g, h, 1, Chandrabose Selvaraj i, 2, Meenakshisundaram Kandhavelu a, , 3 , Parthiban Marimuthu j, , 4
a Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101 Tampere, Finland 
b Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia 
c Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16th Street, 207 Othmer Hall, NE 68588, USA 
d Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan 
e College of Engineering, Akfa University, Milliy Bog Street 264, 111221 Tashkent, Uzbekistan 
f Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, 100084 Tashkent, Uzbekistan 
g Department of Physics, National University of Uzbekistan, Universitet 4, 100174 Tashkent, Uzbekistan 
h Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174 Tashkent, Uzbekistan 
i Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India 
j Pharmaceutical Science Laboratory (PSL – Pharmacy) and Structural Bioinformatics Laboratory (SBL – Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland 

Corresponding authors.

Abstract

Glioblastoma Multiforme (GBM) is known to be by far the most aggressive brain tumor to affect adults. The median survival rate of GBM patient’s is < 15 months, while the GBM cells aggressively develop resistance to chemo- and radiotherapy with their self-renewal capacity which suggests the pressing need to develop novel preventative measures. We have recently proved that GPR17 —an orphan G protein-coupled receptor— is highly expressed on the GBM cell surface and it has a vital role to play in the disease progression. Despite the progress made on GBM downregulation, there still remain difficulties in developing a promising modulator for GPR17, till date. Here, we have performed robust virtual screening combined with biased-force pulling molecular dynamic (MD) simulations to predict high-affinity GPR17 modulators followed by experimental validation. Initially, the database containing 1379 FDA-approved drugs were screened against the orthosteric binding pocket of the GPR17. The external bias-potentials were then applied to the screened hits during the MD simulations which enabled to predict a spectrum of rupture peak force values that were used to select four approved drugs –ZINC000003792417 (Sacubitril), ZINC000014210457 (Victrelis), ZINC000001536109 (Pralatrexate) and ZINC000003925861 (Vorapaxar) as top hits. The hits selected turns out to demonstrate unique dissociation pathways, interaction pattern, and change in polar network over time. Subsequently the selected hits with GPR17 were measured by inhibiting the forskolin-stimulated cAMP accumulation in GBM cell lines, LN229 and SNB19. The ex vivo validations shows that Sacubitril drug can act as a full agonist, while Vorapaxar functions as a partial agonist for GPR17. The pEC50 of Sacubitril was identified as 4.841 and 4.661 for LN229 and SNB19, respectively. Small interference of the RNA (siRNA)– silenced the GPR17 to further validate the targeted binding of Sacubitril with GPR17. In the current investigation, we have identified new repurposable GPR17 specific drugs which are likely to increase the opportunity to treat orphan deadly diseases.

Le texte complet de cet article est disponible en PDF.

Highlights

FDA approved drugs repurposed for GPR17 modulation.
Biased MD simulations predicted high-affinity drugs specific towards GPR17 modulation.
An unique dissociation pathways and interaction pattern demonstrated by the selected hits.
Sacubitril drug can act as a full agonist, while Vorapaxar function as a partial agonist for GPR17.
Sacubitril activate Gαi protein subfamily and inhibit cAMP in GPR17 signaling in GBM cells.

Le texte complet de cet article est disponible en PDF.

Keywords : GPR17, Orphan-GPCRs, Remyelination, Bias-force simulation, Forskolin-stimulated cAMP accumulation


Plan


© 2023  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 160

Article 114320- avril 2023 Retour au numéro
Article précédent Article précédent
  • Isoalantolactone protects against ethanol-induced gastric ulcer via alleviating inflammation through regulation of PI3K-Akt signaling pathway and Th17 cell differentiation
  • Chaoyi Zhou, Jing Chen, Kechun Liu, Kannan Maharajan, Yun Zhang, Linhua Hou, Jianheng Li, Ma Mi, Qing Xia
| Article suivant Article suivant
  • A novel estrogen-targeted PEGylated liposome co-delivery oxaliplatin and paclitaxel for the treatment of ovarian cancer
  • Yizhuo Xie, Zhihui Ren, Hongyu Chen, Huan Tang, Ming Zhu, Zhe Lv, Han Bao, Yan Zhang, Rui Liu, Yujia Shen, Yucui Zheng, Dongfanghui Miao, Xin Guo, Hongli Chen, Shanshan Wang, Jin Pei

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.