S'abonner

Predicting daily emergency department visits using machine learning could increase accuracy - 21/02/23

Doi : 10.1016/j.ajem.2022.12.019 
Gregory Gafni-Pappas, DO a, , Mohammad Khan, MD b
a Department of Emergency Medicine, St. Joseph Mercy Hospital, Ann Arbor, MI, USA 
b Department of Emergency Medicine, NYU Langone Medical Center, New York, NY, USA 

Corresponding author.

Abstract

Objective

Administrators and clinicians alike have attempted to predict emergency department visits for many years. The ability to predict or “forecast” ED visit volume can allow for more efficient resource allocation, including up-staffing or down-staffing, changing OR schedules, and predicting the need for significant resources. The goal of this study is to examine combinations of variables via machine learning to increase prediction accuracy and determine the factors that are most predictive of overall ED visits. As compared to a simple univariate time series model, we hypothesize that machine learning models will predict St. Joseph Mercy Ann Arbor's patient visit load for the emergency department (ED) with higher accuracy than a simple univariate time series model.

Methods

Univariate time series models for daily ED visits, including ARIMA, Exponential Smoothing (ETS), and Facebook Inc.'s prophet algorithm were estimated as a baseline comparison. Machine learning models, including random forests and gradient boosted machines (GBM), were trained using data from 2017 to 2018. After final models were created, they were applied to the 2019 data to determine how well these models predicted actual ED patient volumes in data not utilized during the model fitting process. The accuracy of the machine learning and time series models were assessed based on out-of-sample predictive accuracy, compared using root mean squared error (RMSE).

Results

Using root mean squared error (RMSE) to assess out-of-sample predictive accuracy of the models, the results showed that the random forest model was the most accurate at predicting daily ED visits in the 2019 test set, followed by the GBM model. These performed only slightly better than the simple exponential smoothing model predictions. The ARIMA model performed poorly in comparison. The day of the week (likely capturing differences between weekdays and weekends) was found to be the most important predictor of patient volumes. Weather-related features such as maximum temperature and SFC pressure appeared to capture some of the seasonality trends related to changes in patient volumes.

Conclusions

Machine learning models perform better at predicting daily patient volumes as compared to simple univariate time series models, though not by a substantial amount. Further research can help confirm these limited initial results. Gathering more training data and additional feature engineering could also be beneficial to training the models and potentially improving predictive accuracy.

Le texte complet de cet article est disponible en PDF.

Keywords : Emergency department visit prediction, Prediction, Forecasting, Emergency department operations


Plan


© 2022  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 65

P. 5-11 - mars 2023 Retour au numéro
Article précédent Article précédent
  • Info for authors
| Article suivant Article suivant
  • Extremity tourniquets raise blood pressure and maintain heart rate
  • Samuel Seigler, Heather Holman, Maren Downing, Joshua Kim, Taufiek K. Rajab, Kristen M. Quinn

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.