S'abonner

Using Machine Learning to Predict Hospital Disposition With Geriatric Emergency Department Innovation Intervention - 20/02/23

Doi : 10.1016/j.annemergmed.2022.07.026 
Gabrielle Bunney, MD a, , Steven Tran, BS b, Sae Han, MPH b, Carol Gu, BS d, Hanyin Wang, BMed b, Yuan Luo, PhD c, Scott Dresden, MD a
a Department of Emergency Medicine, Northwestern University, Chicago, IL 
b Feinberg School of Medicine, Northwestern University, Chicago, IL 
c Department of Preventative Medicine, Northwestern University, Chicago, IL 
d Applied Health Sciences, University of Illinois, Chicago, IL 

Corresponding Author.

Abstract

Study objective

The Geriatric Emergency Department Innovations (GEDI) program is a nurse-based geriatric assessment and care coordination program that reduces preventable admissions for older adults. Unfortunately, only 5% of older adults receive GEDI care because of resource limitations. The objective of this study was to predict the likelihood of hospitalization accurately and consistently with and without GEDI care using machine learning models to better target patients for the GEDI program.

Methods

We performed a cross-sectional observational study of emergency department (ED) patients between 2010 and 2018. Using propensity-score matching, GEDI patients were matched to other older adult patients. Multiple models, including random forest, were used to predict hospital admission. Multiple second-layer models, including random forest, were then used to predict whether GEDI assessment would change predicted hospital admission. Final model performance was reported as the area under the curve using receiver operating characteristic models.

Results

We included 128,050 patients aged over 65 years. The random forest ED disposition model had an area under the curve of 0.774 (95% confidence interval [CI] 0.741 to 0.806). In the random forest GEDI change-in-disposition model, 24,876 (97.3%) ED visits were predicted to have no change in disposition with GEDI assessment, and 695 (2.7%) ED visits were predicted to have a change in disposition with GEDI assessment.

Conclusion

Our machine learning models could predict who will likely be discharged with GEDI assessment with good accuracy and thus select a cohort appropriate for GEDI care. In addition, future implementation through integration into the electronic health record may assist in selecting patients to be prioritized for GEDI care.

Le texte complet de cet article est disponible en PDF.

Plan


 Please see page 354 for the Editor’s Capsule Summary of this article.
 Supervising editor: Stephen Schenkel, MD, MPP. Specific detailed information about possible confliict of interest for individual editors is available at editors.
 Author contributions: GB and ST wrote, edited, and performed the analysis of the article. SH, CG, HW, and YL performed the analysis and edited the article. SD supplied data, performed analysis, and edited the article. All authors approved the final manuscript. GB takes responsibility for the paper as a whole.
 All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Funding and support: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). The data used in this study were collected as part of a Health Care Innovation Award from the Centers for Medicare and Medicaid Services #1C1CMS331055. The authors have stated that no such relationships exist.
 Presented the Abstract at the American College of Emergency Physicians Scientific Assembly in Boston, MA, October 2021.
 Readers: click on the link to go directly to a survey in which you can provide KC6VH2S to Annals on this particular article.
 A podcast for this article is available at www.annemergmed.com.


© 2022  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 81 - N° 3

P. 353-363 - mars 2023 Retour au numéro
Article précédent Article précédent
  • Access to Critical Health Information for Children During Emergencies: Emergency Information Forms and Beyond
  • James M. Callahan, Steve Baldwin, Chelsea Bodnar, Susan Fuchs, Steven Krug, Cynthiana Lightfoot, Mordechai Raskas, Stuart Weinberg, AMERICAN ACADEMY OF PEDIATRICS, Committee on Pediatric Emergency Medicine, Council on Clinical Information Technology, Council on Children and Disasters, AMERICAN COLLEGE OF EMERGENCY PHYSICIANS, Pediatric Emergency Medicine Committee, Ann M. Dietrich, Kiyetta H. Alade, Christopher S. Amato, Zaza Atanelov, Marc Auerbach, Isabel A. Barata, Lee S. Benjamin, Kathleen T. Berg, Kathleen Brown, Cindy Chang, Jessica Chow, Corrie E. Chumpitazi, Ilene A. Claudius, Joshua Easter, Ashley Foster, Sean M. Fox, Marianne Gausche-Hill, Michael J. Gerardi, Jeffrey M. Goodloe, Melanie Heniff, James (Jim) L. Homme, Paul T. Ishimine, Susan D. John, Madeline M. Joseph, Samuel Hiu-Fung Lam, Simone L. Lawson, Moon O. Lee, Joyce Li, Sophia D. Lin, Dyllon Ivy Martini, Larry Bruce Mellick, Donna Mendez, Emory M. Petrack, Lauren Rice, Emily A. Rose, Timothy Ruttan, Mohsen Saidinejad, Genevieve Santillanes, Joelle N. Simpson, Shyam M. Sivasankar, Daniel Slubowski, Annalise Sorrentino, Michael J. Stoner, Carmen D. Sulton, Jonathan H. Valente, Samreen Vora, Jessica J. Wall, Dina Wallin, Theresa A. Walls, Muhammad Waseem, Dale P. Woolridge, Policy Statement, Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of All Children
| Article suivant Article suivant
  • Findings on Repeat Posttraumatic Brain Computed Tomography Scans in Older Patients With Minimal Head Trauma and the Impact of Existing Antithrombotic Use
  • Stephen Flaherty, Saptarshi Biswas, Dorraine D. Watts, Nina Y. Wilson, Yan Shen, Jeneva M. Garland, Ransom J. Wyse, Mark J. Lieser, Therèse M. Duane, Patrick J. Offner, Joseph D. Love, William C. Shillinglaw, Darrell L. Hunt, Randy W. Gauny, Samir M. Fakhry, the Delayed TBI Hemorrhage Research Group, Kenneth S. Helmer, Gary J. Curcio, Doreen Gilligan, Dallas A. Taylor, Frances Hughes, Ralph J. Barker, Carol M. Bissinger, Charles J. Miller, Lori F. Harbour, Therèse M. Duane, Matthew M. Carrick, Mark J. Lieser, Stephen Flaherty, Valeria Blair, Julia Perez, Carli Cervantes, Christopher Hogan, Chris R. Ruiz, Meredith Tinti, Cecilia A. Romero, Karla J. Jones, Tara Neeley, Kimberly Wright, James Dunne, Tatiana Eversley-Kelso, Melissa A. Harte, Richard A. Kline, Joseph D. Love, Erika van Doorn, Christie M. Brock, David L. Acuna, Jamie L. Shaddix, Heather Rhodes, Saptarshi Biswas, William C. Shillinglaw, Andrea Slivinski, Patrick J. Offner, Jeffrey H. Levine, Kaysie L. Banton, Burt Katubig

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.