Driving role of head and neck cancer cell secretome on the invasion of stromal fibroblasts: Mechanistic insights by phosphoproteomics - 13/01/23
![](/templates/common/images/mail.png)
![](/templates/common/images/mail.png)
Abstract |
Background |
Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC).
Methods |
Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics.
Results |
Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability
Conclusions |
Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.
Le texte complet de cet article est disponible en PDF.Graphical Abstract |
Highlights |
• | Tumor-driven paracrine signals robustly enhance invasiveness of stromal fibroblasts. |
• | NFs and CAFs equally respond to HNSCC-secreted factors, reflecting a high plasticity. |
• | Mechanistic insights and key signaling networks unveiled by phosphoproteomics. |
• | 11 kinases identified as potential regulators of fibroblast invasion. |
• | Sorafenib emerges as an effective treatment to block exacerbated fibroblast invasion. |
Abbreviations : CAFs, HNSCC, CM, Kc, NFs, HPV, TME, ECM, MMPs, MS, KSEA, EMT, FBS, DTT, SPE, MSA
Keywords : Head and neck cancer, Invasion, Stromal fibroblasts, Cancer-associated fibroblasts, Phosphoproteomics
Plan
Vol 158
Article 114176- février 2023 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?