S'abonner

Predicting short-term outcomes after transcatheter aortic valve replacement for aortic stenosis - 12/01/23

Doi : 10.1016/j.ahj.2022.11.007 
Samuel T. Savitz, PhD a, b, c, Thomas Leong, MPH a, Sue Hee Sung, MPH a, Dalane W. Kitzman, MD d, Edward McNulty, MD e, Jacob Mishell, MD e, Andrew Rassi, MD e, Andrew P. Ambrosy, MD a, e, Alan S. Go, MD a, f, g, h, i,
a Division of Research, Kaiser Permanente Northern California, Oakland, CA 
b Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 
c Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN 
d Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 
e Kaiser Permanente San Francisco Medical Center, San Francisco, CA 
f Department of Medicine, University of California, San Francisco, CA 
g Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 
h Departments of Epidemiology, Biostatistics and Medicine, University of California, San Francisco, CA 
i Department of Medicine, Stanford University, Palo Alto, CA 

Reprint requests: Alan S. Go, M.D., Kaiser Permanente Northern California Division of Research, 2000 Broadway, Oakland, CA 94612-2304.Kaiser Permanente Northern California Division of Research2000 BroadwayOaklandCA94612-2304

Résumé

Background

The approved use of transcatheter aortic valve replacement (TAVR) for aortic stenosis has expanded substantially over time. However, gaps remain with respect to accurately delineating risk for poor clinical and patient-centered outcomes. Our objective was to develop prediction models for 30-day clinical and patient-centered outcomes after TAVR within a large, diverse community-based population.

Methods

We identified all adults who underwent TAVR between 2013-2019 at Kaiser Permanente Northern California, an integrated healthcare delivery system, and were monitored for the following 30-day outcomes: all-cause death, improvement in quality of life, all-cause hospitalizations, all-cause emergency department (ED) visits, heart failure (HF)-related hospitalizations, and HF-related ED visits. We developed prediction models using gradient boosting machines using linked demographic, clinical and other data from the Society for Thoracic Surgeons (STS)/American College of Cardiology (ACC) TVT Registry and electronic health records. We evaluated model performance using area under the curve (AUC) for model discrimination and associated calibration plots. We also evaluated the association of individual predictors with outcomes using logistic regression for quality of life and Cox proportional hazards regression for all other outcomes.

Results

We identified 1,565 eligible patients who received TAVR. The risks of adverse 30-day post-TAVR outcomes ranged from 1.3% (HF hospitalizations) to 15.3% (all-cause ED visits). In models with the highest discrimination, discrimination was only moderate for death (AUC 0.60) and quality of life (AUC 0.62), but better for HF-related ED visits (AUC 0.76). Calibration also varied for different outcomes. Importantly, STS risk score only independently predicted death and all-cause hospitalization but no other outcomes. Older age also only independently predicted HF-related ED visits, and race/ethnicity was not significantly associated with any outcomes.

Conclusions

Despite using a combination of detailed STS/ACC TVT Registry and electronic health record data, predicting short-term clinical and patient-centered outcomes after TAVR remains challenging. More work is needed to identify more accurate predictors for post-TAVR outcomes to support personalized clinical decision making and monitoring strategies.

Le texte complet de cet article est disponible en PDF.

Plan


© 2022  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 256

P. 60-72 - février 2023 Retour au numéro
Article précédent Article précédent
  • Disagreement between pharmacy claims and direct interview to identify patients with non-adherence to chronic cardiometabolic medications
  • Nancy Haff, Niteesh K. Choudhry, Thomas Isaac, Gauri Bhatkhande, Cynthia A. Jackevicius, Michael A. Fischer, Daniel H. Solomon, Thomas D. Sequist, Julie C. Lauffenburger
| Article suivant Article suivant
  • Effect of cooling methods and target temperature on outcomes in comatose patients resuscitated from cardiac arrest: Systematic review and network meta-analysis of randomized trials
  • Shingo Matsumoto, Toshiki Kuno, Takahisa Mikami, Hisato Takagi, Takanori Ikeda, Alexandros Briasoulis, Anna E. Bortnick, Daniel Sims, Jason N. Katz, Jacob Jentzer, Sripal Bangalore, Carlos L. Alviar

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.