S'abonner

Modélisation mathématique des métastases cérébrales du cancer bronchique non à petites cellules : un outil informatique personnalisé pour prédire l’apparition des métastases et la survie des patients - 12/01/23

Doi : 10.1016/j.rmra.2022.11.432 
E. Simon 1, , P. Schlicke 2, A. Mogenet 1, E. Gouton 1, J. Pluvy 1, L. Greillier 1, 3, P. Tomasini 1, 4, S. Benzekry 3
1 Service d’oncologie multidisciplinaire et innovations thérapeutiques, assistance Publique–hôpitaux de Marseille, Aix Marseille Université, Marseille, France 
2 Centre de mathématiques, université technique de Munich, Garching (Munich), Allemagne 
3 Equipe de pharmacologie computationnelle et d’oncologie clinique, Inria Sophia Antipolis–Méditerranée, Centre de recherche sur le cancer de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix Marseille Université UM105, Marseille, France 
4 Équipe d’oncologie prédictive, CRCM, CNRS, INSERM, Aix-Marseille Université, Marseille, France 

Auteur correspondant.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

Introduction

Le pronostic sombre du cancer du poumon non à petites cellules (CPNPC) est en partie dû à la fréquence des métastases cérébrales (MC). Même après un traitement curatif dans les stades précoces, la progression intracrânienne se produit dans 10 à 50% des cas. Celle-ci est difficile à prendre en charge, étant donné l’hétérogénéité des présentations cliniques et la variabilité des traitements disponibles, locaux et systémiques. L’objectif de cette étude était de développer un modèle mathématique prédictif de l’oligoprogression intracrânienne chez les patients atteints de CBNPC aux stades précoces.

Méthodes

Les patients inclus présentaient un CBNPC de stades précoces traités de manière curative et ayant eu une rechute cérébrale première et unique (n=31). En se basant sur des travaux préliminaires menés par notre équipe [2, 1], nous proposons un modèle mathématique pour estimer le nombre et la taille des MC dans le cadre du CBNPC. Les deux paramètres clés du modèle sont: α, qui est le taux de croissance spécifique d’une seule cellule tumorale; et μ, qui est la probabilité par jour et par cellule de donner une métastase. La valeur prédictive de chaque biomarqueur numérique a été évaluée par des analyses de survie globale (SG) et survie sans progression.

Résultats

Le modèle a pu décrire correctement le nombre et la taille des MC lors de la première rechute métastatique pour 20 patients. Les paramètres α et μ ont été significativement associés à la SG (HR 1,65 [1,07–2,53] p=0,0029 et HR 1,95 [1,31–2,91] p=0,0109, respectivement). L’ajout des marqueurs numériques aux marqueurs cliniques a permis d’améliorer de manière significative la valeur prédictive (l’indice c de la SG est passée de 0,585 [IC à 95%: 0,569–0,602], à 0,713 [IC 95% 0,700–0,726], p<0,0001). Ces paramètres permettent d’identifier un groupe de patients à haut risque de rechute cérébrale.

Conclusion

Nous avons démontré que le modèle était applicable à l’oligoprogression cérébrale dans le CBNPC et que les paramètres mathématiques α et μ avaient un potentiel prédictif. Des données de biologie moléculaire seront probablement à intégrer pour améliorer le modèle. La modélisation mathématique représente un outil permettant d’identifier les patients à haut risque de rechute cérébrale et de proposer une prise en charge personnalisée.

Le texte complet de cet article est disponible en PDF.

Plan


© 2022  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 15 - N° 1

P. 237-238 - janvier 2023 Retour au numéro
Article précédent Article précédent
  • Patients en vie 5 ans après l’initiation de nivolumab dans le cancer bronchique non à petites cellules métastatique : caractéristiques, prise en charge et consommations de soins
  • J.B. Assié, F.E. Cotté, D. Reynaud, A.F. Gaudin, V. Grumberg, R. Jolivel, B. Jouaneton, C. Chouaïd
| Article suivant Article suivant
  • Séquençage moléculaire (SM) à haut débit sur biopsies liquides (BL) dans le cancer bronchique non à petites cellules (CBNPC) et impact sur la décision thérapeutique
  • E. Gouton, A. Mogenet, E. Simon, J. Pluvy, L. Greillier, P. Tomasini

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.