S'abonner

Cell-free DNA in maternal blood and artificial intelligence: accurate prenatal detection of fetal congenital heart defects - 22/12/22

Doi : 10.1016/j.ajog.2022.07.062 
Ray Bahado-Singh a, Perry Friedman a, Ciara Talbot a, Buket Aydas b, Siddesh Southekal c, Nitish K. Mishra c, Chittibabu Guda c, Ali Yilmaz a, d, Uppala Radhakrishna a, Sangeetha Vishweswaraiah, PhD d,
a Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI 
b Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI 
c Department of Genetics, Cell Biology, and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 
d Beaumont Research Institute, Royal Oak, MI 

Corresponding author: Sangeetha Vishweswaraiah, PhD.

Abstract

Background

DNA cytosine nucleotide methylation (epigenomics and epigenetics) is an important mechanism for controlling gene expression in cardiac development. Combined artificial intelligence and whole-genome epigenomic analysis of circulating cell-free DNA in maternal blood has the potential for the detection of fetal congenital heart defects.

Objective

This study aimed to use genome-wide DNA cytosine methylation and artificial intelligence analyses of circulating cell-free DNA for the minimally invasive detection of fetal congenital heart defects.

Study Design

In this prospective study, whole-genome cytosine nucleotide methylation analysis was performed on circulating cell-free DNA using the Illumina Infinium MethylationEPIC BeadChip array. Multiple artificial intelligence approaches were evaluated for the detection of congenital hearts. The Ingenuity Pathway Analysis program was used to identify gene pathways that were epigenetically altered and important in congenital heart defect pathogenesis to further elucidate the pathogenesis of isolated congenital heart defects.

Results

There were 12 cases of isolated nonsyndromic congenital heart defects and 26 matched controls. A total of 5918 cytosine nucleotides involving 4976 genes had significantly altered methylation, that is, a P value of <.05 along with ≥5% whole-genome cytosine nucleotide methylation difference, in congenital heart defect cases vs controls. Artificial intelligence analysis of the methylation data achieved excellent congenital heart defect predictive accuracy (areas under the receiver operating characteristic curve, ≥0.92). For example, an artificial intelligence model using a combination of 5 whole-genome cytosine nucleotide markers achieved an area under the receiver operating characteristic curve of 0.97 (95% confidence interval, 0.87–1.0) with 98% sensitivity and 94% specificity. We found epigenetic changes in genes and gene pathways involved in the following important cardiac developmental processes: “cardiovascular system development and function,” “cardiac hypertrophy,” “congenital heart anomaly,” and “cardiovascular disease.” This lends biologic plausibility to our findings.

Conclusion

This study reported the feasibility of minimally invasive detection of fetal congenital heart defect using artificial intelligence and DNA methylation analysis of circulating cell-free DNA for the prediction of fetal congenital heart defect. Furthermore, the findings supported an important role of epigenetic changes in congenital heart defect development.

Le texte complet de cet article est disponible en PDF.

Key words : artificial intelligence, biomarkers, circulating cell-free DNA, congenital heart defect, DNA methylation, precision cardiology


Plan


 The authors report no potential conflicts of interest.
 This study received no specific grant from any funding agency.
 The raw data that support the findings of this study are available from the corresponding author on reasonable request.
 Cite this article as: Bahado-Singh R, Friedman P, Talbot C, et al. Cell-free DNA in maternal blood and artificial intelligence: accurate prenatal detection of fetal congenital heart defects. Am J Obstet Gynecol 2023;228:76.e1-10.


© 2022  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 228 - N° 1

P. 76.e1-76.e10 - janvier 2023 Retour au numéro
Article précédent Article précédent
  • Placental transcriptomic signatures of spontaneous preterm birth
  • Alison G. Paquette, James MacDonald, Theo Bammler, Drew B. Day, Christine T. Loftus, Erin Buth, W. Alex Mason, Nicole R. Bush, Kaja Z. Lewinn, Carmen Marsit, James A. Litch, Michael Gravett, Daniel A. Enquobahrie, Sheela Sathyanarayana
| Article suivant Article suivant
  • Noninvasive prediction models of intra-amniotic infection in women with preterm labor
  • Teresa Cobo, Xavier P. Burgos-Artizzu, M. Carmen Collado, Vicente Andreu-Fernández, Ana B. Sanchez-Garcia, Xavier Filella, Silvia Marin, Marta Cascante, Jordi Bosch, Silvia Ferrero, David Boada, Clara Murillo, Claudia Rueda, Júlia Ponce, Montse Palacio, Eduard Gratacós

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.