Unsupervised clustering of patients with severe aortic stenosis: A myocardial continuum - 02/12/22
Highlights |
• | AS is a heterogeneous disease with major phenotypic variation. |
• | Unbiased statistical approaches identified groups with different prognoses. |
• | Survival of the four clusters show a stepwise increase in mortality rates. |
• | The prognosis seems more driven by extra-valvular damage than by AS severity. |
Abstract |
Background |
Traditional statistics, based on prediction models with a limited number of prespecified variables, are probably not adequate to provide an appropriate classification of a condition that is as heterogeneous as aortic stenosis (AS).
Aims |
To investigate a new classification system for severe AS using phenomapping.
Methods |
Consecutive patients from a referral centre (training cohort) who met the echocardiographic definition of an aortic valve area (AVA) ≤ 1 cm2 were included. Clinical, laboratory and imaging continuous variables were entered into an agglomerative hierarchical clustering model to separate patients into phenogroups. Individuals from an external validation cohort were then assigned to these original clusters using the K nearest neighbour (KNN) function and their 5-year survival was compared after adjustment for aortic valve replacement (AVR) as a time-dependent covariable.
Results |
In total, 613 patients were initially recruited, with a mean±standard deviation AVA of 0.72±0.17 cm2. Twenty-six variables were entered into the model to generate a specific heatmap. Penalized model-based clustering identified four phenogroups (A, B, C and D), of which phenogroups B and D tended to include smaller, older women and larger, older men, respectively. The application of supervised algorithms to the validation cohort (n=1303) yielded the same clusters, showing incremental cardiac remodelling from phenogroup A to phenogroup D. According to this myocardial continuum, there was a stepwise increase in overall mortality (adjusted hazard ratio for phenogroup D vs A 2.18, 95% confidence interval 1.46–3.26; P<0.001).
Conclusions |
Artificial intelligence re-emphasizes the significance of cardiac remodelling in the prognosis of patients with severe AS and highlights AS not only as an isolated valvular condition, but also a global disease.
Le texte complet de cet article est disponible en PDF.Keywords : Aortic stenosis, Artificial intelligence, Clustering, Phenomapping, Echocardiography, Mortality
Abbreviations : AI, ANOVA, AS, AVR, CI, HR, IQR, LVEF, ML, NYHA, SD, TAPSE
Plan
Vol 115 - N° 11
P. 578-587 - novembre 2022 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.