S'abonner

Combination of clinical and spectral-CT parameters for predicting lymphovascular and perineural invasion in gastric cancer - 29/11/22

Doi : 10.1016/j.diii.2022.07.004 
Tiezhu Ren a, b, c, d, Wenjuan Zhang a, c, d, Shenglin Li a, b, c, d : Supervision, Liangna Deng a, b, c, d, Caiqiang Xue a, b, c, d, Zhengxiao Li a, b, c, d, Suwei Liu a, b, c, d, Jiachen Sun a, b, c, d, Junlin Zhou a, b, c, d,
a Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China 
b Second Clinical School, Lanzhou University, Lanzhou 730030, China 
c Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China 
d Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China 

Corresponding author at: Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou, China.Lanzhou University Second HospitalDepartment of RadiologyCuiyingmen No. 82 Chengguan DistrictLanzhouChina

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Highlights

CA125, histological grade, and Borrmann type effectively evaluate lymphovascular invasion and perineural invasion in gastric adenocarcinoma.
Effective atomic number (Zeff) and iodine concentration on arterial and venous phases CT images effectively help indentify lymphovascular invasion and perineural invasion by gastric adenocarcinoma preoperatively.
Combined clinical and spectral-CT parameters are potentially valuable preoperative predictors of lymphovascular invasion and perineural invasion by gastric adenocarcinoma.

Le texte complet de cet article est disponible en PDF.

Abstract

Purpose

The purpose of this study was to investigate the utility of combining clinical and spectral computed tomography (CT) parameters for the preoperative evaluation of lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancers (GCs).

Materials and methods

Patients with gastric adenocarcinoma who underwent spectral-CT examination were retrospectively examined. All diagnoses were confirmed by pathology, and the patients were divided into positive and negative groups based on LVI/PNI occurrence. Clinical characteristics, including demographic information, serum tumor markers, and gastroscopic pathological information, were collected. The effective atomic number (Zeff), iodine concentration (IC), and water concentration were measured in the arterial (AP) and venous phase (VP). Differences between the two groups were searched for using independent sample t-test, Mann–Whitney U test, or chi-square (χ2) test and diagnostic performances of the different variables were evaluated using receiver operating characteristic (ROC) curve.

Results

A total of 121 patients (96 men, 25 women; mean age: 59 ± 8.7 [SD] years, range: 36–82 years) with gastric adenocarcinoma were included in the study. The serum level of the tumor marker CA125, as well as Zeff and IC in the LVI/PNI-positive group, were significantly higher than in the negative group, and the histological grade and Borrmann type differed between the two groups (all P < 0.05). The discriminating capability analysis demonstrated that CA125 exhibited a favorable performance, and the VP parameters’ diagnostic efficacy was superior to that of the AP parameters. The efficacy of the combination of clinical and spectral-CT parameters was superior to that of individual parameters (all AUC > 0.85). The clinical parameters combined with Zeff and IC in the AP and VP exhibited a high evaluation efficacy (AUC = 0.890 [95% CI: 0.826–0.955]; F1 score = 0.888; accuracy = 84.3% [102/121; 95% CI: 76.7−89.8]; sensitivity = 86.2% [75/87; 95% CI: 76.8−92.4]; specificity = 79.4% [27/34; 95% CI: 61.6−90.1]).

Conclusions

Clinical and spectral-CT parameters exhibit considerable capabilities in the preoperative evaluation of LVI and PNI in GCs. The combination of clinical and spectral-CT parameters effectively predicts LVI and PNI in GCs.

Le texte complet de cet article est disponible en PDF.

Keywords : Spectral CT, Gastric cancer, Lymphovascular invasion, Perineural invasion


Plan


© 2022  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 103 - N° 12

P. 584-593 - décembre 2022 Retour au numéro
Article précédent Article précédent
  • Multiparametric imaging of breast cancer: An update of current applications
  • Masako Kataoka, Mami Iima, Kanae Kawai Miyake, Yoshiaki Matsumoto
| Article suivant Article suivant
  • Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow
  • Lisa Canoni-Meynet, Pierre Verdot, Alexis Danner, Paul Calame, Sébastien Aubry

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.