Identification of out-of-hospital cardiac arrest clusters using unsupervised learning - 24/11/22
Abstract |
Aim |
Out-of-hospital cardiac arrest (OHCA) is a leading cause of death, and research has identified limitations in analyzing the factors related to the incidence of cardiac arrest and the frequency of bystander cardiopulmonary resuscitation. This study conducts a cluster analysis of the correlation between location-related factors and the outcome of patients with OHCA using two machine learning methods: variational autoencoder (VAE) and the Dirichlet process mixture model (DPMM).
Methods |
Using the prospectively collected Smart Advanced Life Support registry in South Korea between August 2015 and December 2018, a secondary retrospective data analysis was performed on patients with OHCA with a presumed cause of cardiac arrest in adults of 18 years or older. VAE and DPMM were used to create clusters to determine groups with a common nature among those with OHCA.
Results |
Among 5876 OHCA cases, 1510 patients were enrolled in the final analysis. Decision tree-based models, which have an accuracy of 95.36%, were also used to interpret the characteristics of clusters. A total of 8 clusters that had similar spatial characteristics were identified using DPMM and VAE. Among the generated clusters, the averages of the four clusters that exhibited a high survival to discharge rate and a favorable neurological outcome were 9.6% and 6.1%, and the averages of the four clusters that exhibited a low outcome were 5.1% and 3.5% respectively. In the decision tree-based models, the most important feature that could affect the prognosis of an OHCA patient was being transferred to a higher-level emergency center.
Conclusion |
This methodology can facilitate the development of a regionalization strategy that can improve the survival rate of cardiac arrest patients in different regions.
Le texte complet de cet article est disponible en PDF.Keywords : Out-of-hospital cardiac arrest, Emergency medical services, Artificial intelligence
Plan
Vol 62
P. 41-48 - décembre 2022 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?