Investigating of the role of CT scan for cancer patients during the first wave of COVID-19 pandemic - 21/09/22

Doi : 10.1016/j.redii.2022.100004 
Sylvain Bourdoncle a, Thomas Eche a, Jeremy McGale b, Kevin Yiu b, Ephraïm Partouche a, Randy Yeh c, Samy Ammari d, e, Hervé Rousseau a, Laurent Dercle f, , Fatima-Zohra Mokrane a
a Radiology Department, Rangueil University Hospital, 1 avenue du Professeur Jean, Poulhes, 31059, Toulouse France 
b Columbia University Vagellos College of Physicians and Surgeons, Department of Radiology, New York, New York City, USA. Department of Radiology New York Presbyterian Hospital, United States 
c Memorial Sloan Kettering Cancer Center, Molecular Imaging and Therapy Service. New York, United States 
d Département de l'Imagerie Médicale, Service d'Imagerie Diagnostique, Gustave Roussy, Université Paris Saclay, Villejuif, France 
e BIOMAPS. UMR1281. INSERM.CEA.CNRS.Université Paris-Saclay, France 
f Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States 

Corresponding authors:

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Introduction

Amidst this current COVID-19 pandemic, we undertook this systematic review to determine the role of medical imaging, with a special emphasis on computed tomography (CT), on guiding the care and management of oncologic patients.

Material and Methods

Study selection focused on articles from 01/02/2020 to 04/23/2020. After removal of irrelevant articles, all systematic or non-systematic reviews, comments, correspondence, editorials, guidelines and meta-analysis and case reports with less than 5 patients were also excluded. Full-text articles of eligible publications were reviewed to select all imaging-based publications, and the existence or not of an oncologic population was reported for each publication. Two independent reviewers collected the following information: ( 1) General publication data; (2) Study design characteristics; (3) Demographic, clinical and pathological variables with percentage of cancer patients if available; (4) Imaging performances. The sensitivity and specificity of chest CT (C-CT) were pooled separately using a random-effects model. The positive predictive value (PPV) and negative predictive value (NPV) of C-CT as a test was estimated for a wide range of disease prevalence rates.

Results

A total of 106 publications were fully reviewed. Among them, 96 were identified to have extractable data for a two-by-two contingency table for CT performance. At the end, 53 studies (including 6 that used two different populations) were included in diagnosis accuracy analysis (N = 59). We identified 53 studies totaling 11,352 patients for whom the sensitivity (95CI) was 0.886 (0.880; 0.894), while specificity remained low: in 93% of cases (55/59), specificity was ≤ 0.5. Among all the 106 reviewed studies, only 7 studies included oncologic patients and were included in the final analysis for C-CT performances. The percentage of patients with cancer in these studies was 0.3% (34/11352 patients), lower than the global prevalence of cancer. Among all these studies, only 1 (0.9%, 1/106) reported performance specifically in a cohort of cancer patients, but it however only reported true positives.

Discussion

There is a concerning lack of COVID-19 studies involving oncologic patients, showing there is a real need for further investigation and evaluation of the performance of the different medical imaging modalities in this specific patient population.

Le texte complet de cet article est disponible en PDF.

Keywords : COVID-19, Multidetector computed tomography, Meta-analysis, Medical oncology


Plan


© 2022  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 1

Article 100004- mars 2022 Retour au numéro
Article précédent Article précédent
  • Value and prognostic impact of a deep learning segmentation model of COVID-19 lung lesions on low-dose chest CT
  • Axel Bartoli, Joris Fournel, Arnaud Maurin, Baptiste Marchi, Paul Habert, Maxime Castelli, Jean-Yves Gaubert, Sebastien Cortaredona, Jean-Christophe Lagier, Matthieu Million, Didier Raoult, Badih Ghattas, Alexis Jacquier
| Article suivant Article suivant
  • Quantitative and qualitative evaluation of liver metastases with intraprocedural cone beam CT prior to transarterial radioembolization as a predictor of treatment response
  • Florian Messmer, Juliana Zgraggen, Adrian Kobe, Lyubov Chaykovska, Gilbert Puippe, Caecilia S. Reiner, Thomas Pfammatter

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.