S'abonner

Fast Evaluation of Unhealthy and Healthy Neonates Using Hyperspectral Features on 700-850 Nm Wavelengths, ROI Extraction, and 3D-CNN - 20/09/22

Doi : 10.1016/j.irbm.2021.06.009 
M. Cihan a, , M. Ceylan a , H. Soylu b , M. Konak b
a Faculty of Engineering and Natural Sciences, The Department of Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey 
b Faculty of Medicine, The Department of Neonatology, Selcuk University, Konya, Turkey 

Corresponding author.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Spectral signatures of unhealthy and healthy neonates are different.
Both spatial and spectral features are obtained using 3D-CNN.
The health status of neonates can be fastly evaluated using HSI and 3D-CNN.
Neonatal Hypercubes were classified as unhealthy and healthy.

Le texte complet de cet article est disponible en PDF.

Abstract

Objectives

Hyperspectral imaging (HSI) has great potential in detecting the health conditions of neonates as it provides diagnostic information about the tissue by avoiding tissue biopsy. HSI gives more features than thermal imaging, which can obtain images in a single wavelength, as it can obtain images in a large number of wavelengths. The data obtained with hyperspectral sensors are 3-dimensional data called hypercube including first two-dimensional spatial information and third-dimensional spectral information.

Material and methods

In this study, hyperspectral data were obtained from 19 different neonates in the Neonatal Intensive Care Unit (NICU) of Selcuk University, Medical Faculty. There are 16 hypercubes from 16 unhealthy neonates, 16 hypercubes from 3 healthy neonates in a period of three months, and 32 hypercubes in total are available. For the training of 3D-CNN model, data augmentation methods, such as rotation, height shifting, width shifting, and shearing were applied to hyperspectral data. A number of 32 hypercubes taken from neonates in NICU were augmented to 160 hypercubes. Spectral signatures were examined and 51 bands in the range of 700-850 nm with distinctive features were used for the classification. The spectral dimension was reduced by applying Principal Component Analysis (PCA) to all hypercubes. In addition, it is aimed to obtain both spectral and spatial features with the 3D-CNN. For increasing the classification efficiency, ROI extraction was made and four datasets were created in different spatial dimensions. These datasets contain 160, 640, 1440, and 5760 hypercubes, respectively.

Results

The best result was achieved by using 5760 hypercubes of 25x25x51. As a result of the classification of the hypercubes, accuracy 98.00%, sensitivity 97.22%, and specificity 98.78% were obtained. It was determined how many PCs used to achieve the best result. Further, the proposed 3D-CNN model is compared to 2D-CNN model to evaluate the performance of the study.

Conclusion

It was aimed to evaluate the health status of neonates fastly by using HSI and 3D-CNN for the first time. The obtained results are an indication that HSI and 3D-CNN are very effective for the evaluation of unhealthy and healthy neonates.

Le texte complet de cet article est disponible en PDF.

Keywords : Hyperspectral imaging, Neonates, Deep learning, 3D convolutional neural network, Spectral-spatial features, ROI extraction, Classification


Plan


© 2021  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 43 - N° 5

P. 362-371 - octobre 2022 Retour au numéro
Article précédent Article précédent
  • EEG Based Evaluation of Examination Stress and Test Anxiety Among College Students
  • V.G. Rajendran, S. Jayalalitha, K. Adalarasu
| Article suivant Article suivant
  • Fatigue Loading Effect in Custom-Made All-on-4 Implants System: A 3D Finite Elements Analysis
  • A. Darwich, A. Alammar, O. Heshmeh, S. Szabolcs, H. Nazha

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.