High-accuracy in the classification of butchery cut marks and crocodile tooth marks using machine learning methods and computer vision algorithms - 16/09/22
Abstract |
Some researchers using traditional taphonomic criteria (groove shape and presence/absence of microstriations) have cast some doubts about the potential equifinality presented by crocodile tooth marks and stone tool butchery cut marks. Other researchers have argued that multivariate methods can efficiently separate both types of marks. Differentiating both taphonomic agents is crucial for determining the earliest evidence of carcass processing by hominins. Here, we use an updated machine learning approach (discarding artificially bootstrapping the original imbalanced samples) to show that microscopic features shaped as categorical variables, corresponding to intrinsic properties of mark structure, can accurately discriminate both types of bone modifications. We also implement new deep-learning methods that objectively achieve the highest accuracy in differentiating cut marks from crocodile tooth scores (99% of testing sets). The present study shows that there are precise ways of differentiating both taphonomic agents, and this invites taphonomists to apply them to controversial paleontological and archaeological specimens.
Le texte complet de cet article est disponible en PDF.Keywords : Taphonomy, Cut marks, Tooth marks, Machine learning, Deep learning, Convolutional neural networks, Butchery
Plan
☆ | Corresponding editor: Gildas Merceron. |
Vol 72
P. 12-21 - août 2022 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?