S'abonner

A statistical focus on doping using a metabolomics approach - 15/08/22

Doi : 10.1016/j.toxac.2022.06.072 
Bethany Keen 1, , Adam Cawley 2, Brian Reedy 3, Glenys Noble 4, Shanlin Fu 1
1 Centre for forensic science, University of technology Sydney, Sydney, Australia 
2 Australian racing forensic laboratory, Racing nsw, Sydney, Australia 
3 School of mathematical and physical sciences, University of technology Sydney, Sydney, Australia 
4 School of animal & veterinary sciences, Charles Sturt university, Wagga Wagga, Australia 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

Aim

Identify potential biomarkers that are indicative of doping in equine plasma through statistical analysis of metabolomics data.

Introduction

The purpose of metabolomics is to detect endogenous changes in molecular entities, such as metabolites and adducts, that are indicative of challenges to the system (Fiehn et al., Metabolomics, 2015, 11, 1036–1040). These challenges to the system may include things such as doping, disease and environmental changes. Doping is an ever-growing field due to the changing nature of new and popular agents. For the racing industry, any performance altering agents are prohibited to maintain the welfare of athletes involved and the integrity of the sport and breeding industry (Cawley et al., Drug Testing and Analysis, 2017, 9, 1441–1447). Therefore, an alternative approach to conventional detection methods is essential for the decreasing the bottleneck that is the introduction of new compounds into routine screening efforts.

Method

Using only 100μL of equine plasma, a rapid protein precipitation method was developed for the analysis of endogenous compounds. The IMTAKT Intrada Amino Acid column (100mm×2mm, 3μm) was able to separate dopamine-related compounds. The method used positive and negative ionisation mode with an 11-minute gradient method on the Agilent 1290 Infinity II LC system coupled to an Agilent 6545 QTOF mass spectrometer. A substantial reference population study was completed to assess basal concentrations of endogenous compounds of interest. A 12-horse administration study of Stalevo® (800mg levodopa, 200mg carbidopa, 1600mg entacapone) was analysed. Agilent Technologies’ Profinder was used to complete a batch recursive feature extraction of the data. The statistical analysis included longitudinal profiling and identification of significant entities through volcano plot analysis, principal component analysis and heatmap visualisation. Biomarker quality was determined using a ‘best biomarker quality (BBQ)’ assessment.

Results

The LC-QTOF-MS method was successfully with respect to the quantification of 3-methoxytyrosine. The reference population study revealed variable levels of 3-methoxytyrosine in the population thus monitoring through individual reference limits was proposed. The longitudinal profiling approach, using 3-methoxytyrosine as an up-regulated biomarker, was proven to be more sensitive than a threshold proposed from a population. The untargeted approach using Profinder extracted a wealth of data across the administration study. The statistical analysis was able to determine significant biomarkers. The most significant biomarkers were investigated and attempted to be identified through database searching and confirmation with reference standards. An individualised reference limit approach using longitudinal profiling allowed for raceday control of levodopa misuse within the equine athlete. The untargeted metabolomics method provided an interesting alternative to conventional detection methods thus enabling the identification of biomarkers that are indicative of doping. Biomarker ratios were investigated to provide more statistical power than a single biomarker. Further work investigating an orthogonal approach using a reverse phase analytical method would allow for wider coverage of the metabolome.

Conclusion

Doping continues to be a threat to the integrity of horse racing and thus new detection methods, such as metabolomics and statistical profiling, must be implemented to combat this challenge. 3-methoxytyrosine was identified to be a viable up-regulated biomarker for doping of levodopa. An untargeted metabolomics approach enabled the detection of further biomarkers thus allowing for a more statistically powerful biomarker ratio to be investigated.

Le texte complet de cet article est disponible en PDF.

Plan


© 2022  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 34 - N° 3S

P. S58 - septembre 2022 Retour au numéro
Article précédent Article précédent
  • Investigation of metabolic biomarkers: A metabolomics approach
  • Yan Jinni, Kuzhiumparambil Unnikrishnan, Bandodkar Sushil, Dale Russell, Solowij Nadia, Fu Shanlin
| Article suivant Article suivant
  • Metabolism of the synthetic cathinone alpha-pyrrolidinoisohexanophenone in humans using UHPLC-MS-QToF
  • Klaudia Kemenes, Eld Hidvégi, ágnes Kerner, Gábor Süvegh

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.