S'abonner

Indocyanine Green Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy: The Beginning of “Automatic” Overlapping Era - 13/06/22

Doi : 10.1016/j.urology.2021.10.053 
Daniele Amparore 1, 2, §, , Enrico Checcucci 3, 4, §, Pietro Piazzolla 5, Federico Piramide 1, Sabrina De Cillis 1, Alberto Piana 1, Paolo Verri 1, Matteo Manfredi 1, Cristian Fiori 1, Enrico Vezzetti 5, Francesco Porpiglia 1, 6
1 Department of Oncology, Division of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano (Turin), Italy 
2 Renal Cancer Working Group of the Young Academic Urologists (YAU) Working Party of the European Association of Urology (EAU), Arnhem, The Netherlands 
3 Department of Surgery, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy 
4 Uro-technology and SoMe Working Group of the Young Academic Urologists (YAU) Working Party of the European Association of Urology (EAU), Arnhem, The Netherlands 
5 Department of Management and Production Engineer, Politechnic University of Turin, Italy 
6 EAU Section of Uro-Technology (ESUT). 

Address correspondence to: Daniele Amparore, M.D., Department of Oncology, Division of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, (Turin), Regione Gonzole 10, 10043, Italy.Department of OncologyDivision of UrologyUniversity of TurinSan Luigi Gonzaga HospitalRegione Gonzole 10Orbassano, (Turin)10043Italy

Editor: Dr. E. Klein

ABSTRACT

Augmented reality robot-assisted partial nephrectomy (AR-RAPN) is limited by the need of a constant manual overlapping of the hyper-accuracy 3D (HA3D) virtual models to the real anatomy. To present our preliminary experience with automatic 3D virtual model overlapping during AR-RAPN. To reach a fully automated HA3D model overlapping, we pursued computer vision strategies, based on the identification of landmarks to link the virtual model. Due to the limited field of view of RAPN, we used the whole kidney as a marker. Moreover, to overcome the limit of similarity of colors between the kidney and its neighboring structures, we super-enhanced the organ, using the NIRF Firefly fluorescence imaging technology. A specifically developed software named “IGNITE” (Indocyanine GreeN automatIc augmenTed rEality) allowed the automatic anchorage of the HA3D model to the real organ, leveraging the enhanced view offered by NIRF technology. Ten automatic AR-RAPN were performed. For all the patients a HA3D model was produced and visualized as AR image inside the robotic console. During all the surgical procedures, the automatic ICG-guided AR technology successfully anchored the virtual model to the real organ without hand-assistance (mean anchorage time: 7 seconds), even when moving the camera throughout the operative field, while zooming and translating the organ. In 7 patients with totally endophytic or posterior lesions, the renal masses were correctly identified with automatic AR technology, performing a successful enucleoresection. No intraoperative or postoperative Clavien >2 complications or positive surgical margins were recorded. Our pilot study provides the first demonstration of the application of computer vision technology for AR procedures, with a software automatically performing a visual concordance during the overlap of 3D models and in vivo anatomy. Its actual limitations, related to the kidney deformations during surgery altering the automatic anchorage, will be overcome implementing the organ recognition with deep learning algorithms.

Le texte complet de cet article est disponible en PDF.

 Financial Disclosure: All the authors have nothing to declare.


© 2022  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 164

P. e312-e316 - juin 2022 Retour au numéro
Article précédent Article précédent
  • AUTHOR REPLY
  • Dmitriy Nikolavsky
| Article suivant Article suivant
  • EDITORIAL COMMENT
  • Tanner Corse, Michael Stifelman, Nitin Yerram

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.