S'abonner

Identifying asthma patients at high risk of exacerbation in a routine visit: A machine learning model - 07/06/22

Doi : 10.1016/j.rmed.2022.106866 
Tianze Jiao a, b, Mireille E. Schnitzer c, d, e, Amélie Forget d, f, Lucie Blais d, f,
a Center for Drug Evaluation and Safety, University of Florida, Gainesville, FL, USA 
b Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, USA 
c Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada 
d Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada 
e Department of Social and Preventive Medicine, Université de Montréal, Canada 
f Research Center, Hôpital Du Sacré-Coeur de Montréal, Montréal, Québec, Canada 

Corresponding author. . Faculty of Pharmacy, University of Montréal. Pavillon Jean-Coutu. 2940, chemin de la Polytechnique. Bureau 2125-1, Montréal QC, Canada H3T 1J4:Faculty of PharmacyUniversity of Montréal. Pavillon Jean-Coutu. 2940chemin de la Polytechnique. Bureau 2125-1Montréal QCH3T 1J4Canada

Abstract

Background

Tools capable of predicting the risk of asthma exacerbations can facilitate asthma management in clinical practice. However, existing tools require additional data from patients beyond electronic medical records.

Objective

To predict asthma exacerbation in an upcoming year using electronically accessible data conditional on past adherence to asthma medications.

Methods

This retrospective cohort study included patients with ≥1 hospitalization or ≥2 medical claims for asthma within 2 consecutive years between 2002 and 2015 in Quebec administrative databases. Cohort entry (CE) was defined as the date of the first asthma-related ambulatory visit on or after meeting the operational definition of asthma. Adherence to each controller medication and use of each rescue medication was measured in the year prior to CE. Elastic-net regularized logistic regression was applied.

Results

Among 98,823 patients, the mean age was 55.9 years and 36.2% were men. The area under the curve for prediction was 0.708. In the model, the use of long-acting anticholinergic or long-acting β2-agonists in the year prior to CE increased the odds of exacerbation by 24% and 21%, respectively. Among patients who received rescue medication, low and high adherence to controller medications increased the odds by 2%–5% compared with patients with medium adherence. Patients with a predicted risk of ≥0.20 were more likely to develop future exacerbation.

Conclusion

This risk prediction indicated that asthma-related medication use increased the risk of asthma exacerbation. A potential U-shaped relationship between adherence to controller medications and the risk of exacerbation was identified among users of rescue medications.

Le texte complet de cet article est disponible en PDF.

Highlights

What is already known about this topic?

Several models have been created to predict the exacerbation of asthma patients. Yet, some of them requested additional measurements from physicians and failed to include the adherence of individual controller medication.

What does this article add to our knowledge?

A model predicting asthma exacerbation with electronically accessible data was created using machine learning, which indicated asthma-related medication use increased the risk of asthma exacerbation and a potential U-shaped relationship between adherence to controller medications and the risk of exacerbation.

How does this study impact current management guidelines

To facilitate the utilization in asthma management, this model only included electronically accessible data, avoided additional measurement from physicians. It quantifies the risk of disease progression and could be embedded into the electronic medical records to assist real-time decision-making in practice.

Le texte complet de cet article est disponible en PDF.

Keywords : Asthma management, Asthma exacerbation, Medication adherence, Machine learning, Elastic-net regression, Prediction model


Plan


© 2022  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 198

Article 106866- juillet 2022 Retour au numéro
Article précédent Article précédent
  • Depressive and anxiety symptoms in patients with COPD: A network analysis
  • Abebaw M. Yohannes, Martino Belvederi Murri, Nicola A. Hanania, Elizabeth A. Regan, Anand Iyer, Surya P. Bhatt, Victor Kim, Gregory L. Kinney, Robert A. Wise, Michelle N. Eakin, Karin F. Hoth, For the COPDGene Investigators
| Article suivant Article suivant
  • Fractional exhaled nitric oxide and mortality in asthma and chronic obstructive pulmonary disease in a national cohort aged 40 years and older
  • Isaac Ikwu, Louis Gardy Nicolas, Alem Mehari, Richard F. Gillum

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.