S'abonner

Overweight and risk of type 2 diabetes: A prospective Chinese twin study - 15/05/22

Doi : 10.1016/j.diabet.2021.101278 
Yu'e Xi a, Wenjing Gao a, , Ke Zheng a, Jun Lv a, Canqing Yu a, Shengfeng Wang a, Tao Huang a, Dianjianyi Sun a, Chunxiao Liao a, Yuanjie Pang a, Zengchang Pang b, Min Yu c, Hua Wang d, Xianping Wu e, Zhong Dong f, Fan Wu g, Guohong Jiang h, Xiaojie Wang i, Yu Liu j, Jian Deng k, Lin Lu l, Weihua Cao a, , Liming Li a
a Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China 
b Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China 
c Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China 
d Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China 
e Sichuan Center for Disease Control and Prevention, Chengdu 610041, China 
f Beijing Center for Disease Prevention and Control, Beijing 100013, China 
g Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China 
h Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China 
i Qinghai Center for Diseases Prevention and Control, Xining 810007, China 
j Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China 
k Handan Center for Disease Control and Prevention, Handan 056001, China 
l Yunnan Center for Disease Control and Prevention, Kunming 650034, China 

Corresponding author at: Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, 38 Xueyuan Road, Haidian District, Beijing 100191, China.Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science Centre38 Xueyuan RoadHaidian DistrictBeijing100191China

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Objectives

: This study aimed to estimate the association between overweight and type 2 diabetes mellitus (T2DM) in twins, and further to explore whether genetic and early-life environmental factors account for this association.

Methods

: This study included 31,197 twin individuals from the Chinese National Twin Registry (CNTR). Generalized estimating equation (GEE) models were applied for unmatched case-control analysis. Conditional logistic regressions were used in co-twin matched case-control analysis. Logistic regressions were fitted to examine the differences in odds ratios (ORs) from the GEE models and conditional logistic regressions. Bivariate genetic model was used to explore the genetic and environmental correlation between body mass index (BMI) and T2DM.

Results

: In the GEE model, overweight was associated with a higher T2DM risk (OR=2.71, 95% confidence interval (CI): 1.96∼3.73), compared with participants with normal BMI. In the multi-adjusted conditional logistic regression, the association was still significant (OR=2.60, 95% CI: 1.15∼5.87). The ORs from the unmatched and matched analyses were different (P = 0.042). Particularly, overweight could increase T2DM risk in monozygotic (MZ) twins, and the difference in ORs between the unmatched and matched designs was significant (P = 0.014). After controlling for age and sex, the positive BMI-T2DM association was partly due to a significant genetic correlation (rA= 0.31, 95% CI: 0.20∼0.41).

Conclusions

: Our findings suggest that genetics and early-life environments might account for the observed overweight-T2DM association. Genetic correlation between BMI and T2DM further provides evidence for the influence of overlap genes on their association.

Le texte complet de cet article est disponible en PDF.

Keywords : Genetic correlation, Overweight, Type 2 diabetes, Twin study

Abbreviations : T2DM, RR, MR, BMI, CNTR, MZ, DZ, T1DM, GEE, OR, A, D, C, E, ICC, CTCT, rph, rA, rC, rE, AIC, SD, HR, HBW, LGA, LBW


Plan


© 2021  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 48 - N° 3

Article 101278- mai 2022 Retour au numéro
Article précédent Article précédent
  • Design of a prospective, longitudinal cohort of people living with type 1 diabetes exploring factors associated with the residual cardiovascular risk and other diabetes-related complications: The SFDT1 study
  • JP. Riveline, B. Vergés, B. Detournay, S. Picard, PY. Benhamou, E. Bismuth, L. Bordier, N. Jeandidier, M. Joubert, R. Roussel, A. Sola-Gazagnes, A. Bonnefond, S. Clavel, FL. Velayoudom, J. Beltrand, H. Hanaire, P. Fontaine, C. Thivolet, H. Servy, S. Tubiana, S. Lion, Jean-François Gautier, Etienne Larger, E. Vicaut, L. Sablone, G. Fagherazzi, E. Cosson
| Article suivant Article suivant
  • Serum uric acid in early pregnancy and risk of gestational diabetes mellitus: A cohort study of 85,609 pregnant women
  • Yan Zhao, Yongbo Zhao, Kechen Fan, Liping Jin

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.