S'abonner

Fast and Accurate Registration of the Proximal Femurs in Bilateral Hip Joint Images by Using the Random Sub-Sample Points - 24/03/22

Doi : 10.1016/j.irbm.2021.04.001 
A. Memiş a, , S. Varlı a , F. Bilgili b
a Department of Computer Engineering, Faculty of Electrical and Electronics Engineering, Yıldız Technical University, İstanbul, Turkey 
b Department of Orthopaedics and Traumatology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 12
Iconographies 12
Vidéos 0
Autres 0

Abstract

Background and Objective

As is known, point clouds representing the objects are frequently used in object registration. Although the objects can be registered by using all the points in the corresponding point clouds of the objects, the registration process can also be achieved with a smaller number of the landmark points selected from the entire point clouds of the objects. This paper introduces a research study focusing on the fast and accurate rigid registration of the bilateral proximal femurs in bilateral hip joint images by using the random sub-sample points. For this purpose, Random Point Sub-sampling (RPS) was analyzed and the reduced point sets were used for an accurate registration of the bilateral proximal femurs in coronal hip joint magnetic resonance imaging (MRI) slices.

Methods

In registration, bilateral proximal femurs in MRI slices were registered rigidly by performing a process consisting of three main phases named as MR image preprocessing, proximal femur registration over the random sub-sample points and MR image postprocessing. In the stage of the MR image preprocessing, segmentation maps of the bilateral proximal femurs are obtained as region of interest (RoI) images from the entire MRI slices and then, the edge maps of the segmented proximal femurs are extracted. In the registration phase, the edge maps describing the proximal femur surfaces are represented as point clouds initially. Thereafter, the RPS is performed on the proximal femur point clouds and the number of points representing the proximal femurs is reduced at different ratios. For the registration of the point clouds, the Iterative Closest Point (ICP) algorithm is performed on the reduced sets of points. Finally, the registration procedures are completed by performing MR image postprocessing on the registered proximal femur images.

Results

In performance evaluation tests performed on healthy and pathological proximal femurs in 13 bilateral coronal hip joint MRI slices of 13 Legg-Calve-Perthes disease (LCPD) patients, bilateral proximal femurs were successfully registered with very small error rates by using the reduced set of points obtained via the RPS and promising results were achieved. The minimum error rate was observed at RPS rate of 30% as the value of 0.41 (±0.31)% on all over the bilateral proximal femurs evaluated. When the range of RPS rate of 20-30% is considered as the reference, the elapsed time in registration can be reduced by almost 30-40% compared to the case where all the proximal femur points were included in registration. Additionally, it was observed that the RPS rate should be selected as at least 25% to achieve a successful registration with an error rate below 1%.

Conclusion

It was concluded from the observed results that a more successful and faster registration can be accomplished by selecting fewer points randomly from the point sets of proximal femurs instead of using all the points describing the proximal femurs. Not only an accurate registration with low error rates was performed, but also a faster registration process was performed by means of the limited number of points that are sub-sampled randomly from the whole point sets.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

A fast and accurate registration of the bilateral proximal femurs was introduced.
Bilateral proximal femurs were registered by using random sub-sample points in 2D.
Coronal hip joint MRI slices of Legg-Calve-Perthes disease patients were evaluated.
An error rate below 1% was achieved by using the 25% of all proximal femurs points.
Registration time consumption reduced about 30-40% compared to the normal case.

Le texte complet de cet article est disponible en PDF.

Keywords : Medical image registration, Proximal femur registration, Random point sub-sampling, Iterative closest point, Legg-Calve-Perthes disease


Plan


© 2021  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 43 - N° 2

P. 130-141 - avril 2022 Retour au numéro
Article précédent Article précédent
  • Artificial Immune Systems-Based Classification Model for Code-Mixed Social Media Data
  • S. Shekhar, D.K. Sharma, D.K. Agarwal, Y. Pathak

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.