MRI-based brain tumour image detection using CNN based deep learning method - 05/03/22

Doi : 10.1016/j.neuri.2022.100060 
Arkapravo Chattopadhyay , Mausumi Maitra
 Department of Information Technology, Government College of Engineering and Ceramic Technology, Kolkata-700010, West Bengal, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Introduction

In modern days, checking the huge number of MRI (magnetic resonance imaging) images and finding a brain tumour manually by a human is a very tedious and inaccurate task. It can affect the proper medical treatment of the patient. Again, it can be a hugely time-consuming task as it involves a huge number of image datasets. There is a good similarity between normal tissue and brain tumour cells in appearance, so segmentation of tumour regions become a difficult task to do. So there is an essentiality for a highly accurate automatic tumour detection method.

Method

In this paper, we proposed an algorithm to segment brain tumours from 2D Magnetic Resonance brain Images (MRI) by a convolutional neural network which is followed by traditional classifiers and deep learning methods. We have taken various MRI images with diverse Tumour sizes, locations, shapes, and different image intensities to train the model well. Furthermore, we have applied SVM classifier and other activation algorithms (softmax, RMSProp, sigmoid, etc) to cross-check our work. We implement our proposed method using “TensorFlow” and “Keras” in “Python” as it is an efficient programming language to perform fast work.

Result

In our work, CNN gained an accuracy of 99.74%, which is better than the state of the result obtained so far.

Conclusion

Our CNN based model will help the doctors to detect brain tumours in MRI images accurately, so that the speed in treatment will increase a lot.

Le texte complet de cet article est disponible en PDF.

Plan


© 2022  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 2 - N° 4

Article 100060- décembre 2022 Retour au numéro
Article précédent Article précédent
  • Optimal acquisition sequence for AI-assisted brain tumor segmentation under the constraint of largest information gain per additional MRI sequence
  • Raphael M. Kronberg, Dziugas Meskelevicius, Michael Sabel, Markus Kollmann, Christian Rubbert, Igor Fischer
| Article suivant Article suivant
  • Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction
  • Disha Sushant Wankhede, R. Selvarani

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.