A deep learning-based comparative study to track mental depression from EEG data - 15/01/22

Doi : 10.1016/j.neuri.2022.100039 
Avik Sarkar a, , Ankita Singh b, Rakhi Chakraborty b
a JIS College of Engineering, Kalyani, Nadia, West Bengal, India 
b Global Institute of Management and Technology, Krisnanagar, Nadia, West Bengal, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Modern day's society is engaged in commitment-based and time-bound jobs. This invites tension and mental depression among many people who are not able to cope up with this type of working environment. Cases of mental depression are increasing day by day all over the world. Recently, the onset of the COVID-19 pandemic has added further fuel to the fire. In many countries, the ratio between patients with mental depression and psychiatrists or psychologists is remarkably poor. Under such a situation, the design, and development of an expert system by exploiting the hidden power of various deep learning (DL) and machine learning (ML) techniques can solve the problem up to a greater extent.

Methodology

Each deep learning and machine learning technique has got its advantages and disadvantages to handle different classification problems. In this article four neural network-based deep learning architectures namely MLP, CNN, RNN, RNN with LSTM, and two Supervised Machine Learning Techniques such as SVM and LR are implemented to investigate and compare their suitability to track the mental depression from EEG Data.

Result

Among Neural Network-Based Deep Learning techniques RNN model has achieved the highest accuracy with 97.50% in Training Set and 96.50% in the Testing set respectively. It has been followed with RNN with LSTM model when there were 40% data in the Testing Set. Whereas both the Supervised Machine Learning Models namely SVM and LR have outperformed with 100.00% accuracies in Training Phase and approximately 97.25% accuracies in Testing Phase respectively.

Conclusion

This investigation and comparison-oriented study establish the suitability of RNN, RNN with LSTM, SVM and LR model to track mental depression from EEG data. This type of comparative research using Machine Learning and Deep learning architectures must be framed out on this topic to finalize the design and development of an expert system for the automatic detection of depression from EEG data.

Le texte complet de cet article est disponible en PDF.

Keywords : Multi-layer perceptron (MLP), Convolution neural network with MLP as a classifier (CNN), Recurrent neural network (RNN), RNN with LSTM (long- and short-term memory), Support vector machine (SVM), Logistic regression (LR), Mental depression tracker


Plan


© 2022  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 2 - N° 4

Article 100039- décembre 2022 Retour au numéro
Article précédent Article précédent
  • Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer
  • Karar Ali, Zaffar Ahmed Shaikh, Abdullah Ayub Khan, Asif Ali Laghari
| Article suivant Article suivant
  • A systematic review of artificial intelligence for pediatric physiotherapy practice: Past, present, and future
  • Ravula Sahithya Ravali, Thangavel Mahalingam Vijayakumar, Karunanidhi Santhana Lakshmi, Dinesh Mavaluru, Lingala Viswanath Reddy, Mervin Retnadhas, Tintu Thomas

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.