S'abonner

Global internet search trends related to gastrointestinal symptoms predict regional COVID-19 outbreaks - 05/01/22

Doi : 10.1016/j.jinf.2021.11.003 
Shuai Ben a, b, 1, Junyi Xin a, b, 1, Silu Chen a, b, 1, Yan Jiang c, Qianyu Yuan d, Li Su d, David C. Christiani d, e, Zhengdong Zhang a, b, , Mulong Du b, f, , Meilin Wang a, b, g,
a Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China 
b Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China 
c Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China 
d Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America 
e Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America 
f Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China 
g Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China 

Corresponding authors at: Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China.Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166China

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Real-time surveillance of search behavior on the internet has achieved accessibility in measuring disease activity. In this study, we systematically assessed the associations between internet search trends of gastrointestinal (GI) symptom terms and daily newly confirmed COVID-19 cases at both global and regional levels.

Methods

Relative search volumes (RSVs) of GI symptom terms were derived from internet search engines. Time-series analyses with autoregressive integrated moving average models were conducted to fit and forecast the RSV trends of each GI symptom term before and after the COVID-19 outbreak. Generalized additive models were used to quantify the effects of RSVs of GI symptom terms on the incidence of COVID-19. In addition, dose-response analyses were applied to estimate the shape of the associations.

Results

The RSVs of GI symptom terms could be characterized by seasonal variation and a high correlation with symptoms of “fever” and “cough” at both global and regional levels; in particular, “diarrhea” and “loss of taste” were abnormally increased during the outbreak period of COVID-19, with elevated point changes of 1.31 and 8 times, respectively. In addition, these symptom terms could effectively predict a COVID-19 outbreak in advance, underlying the lag correlation at 12 and 5 days, respectively, and with mutual independence. The dose-response curves showed a consistent increase in daily COVID-19 risk with increasing search volumes of “diarrhea” and “loss of taste”.

Conclusion

This is the first and largest epidemiologic study that comprehensively revealed the advanced prediction of COVID-19 outbreaks at both global and regional levels via GI symptom indicators.

Le texte complet de cet article est disponible en PDF.

Keywords : Google trends, COVID-19, Gastrointestinal symptoms, Time-series analysis


Plan


© 2021  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 84 - N° 1

P. 56-63 - janvier 2022 Retour au numéro
Article précédent Article précédent
  • A SARS-CoV-2 nucleocapsid ELISA represents a low-cost alternative to lateral flow testing for community screening in LMI countries
  • Maria Victoria Humbert, Precious Chinonyerem Opurum, Nathan J Brendish, Stephen Poole, Peijun He, Ioannis Katis, Jerry Quaye, Yaw Bediako, Patrick Jacques Duriez, Robert W Eason, Collin Sones, Osbourne Quaye, Gordon A Awandare, Myron Christodoulides, Tristan W Clark, Peter K Quashie, Christopher J McCormick
| Article suivant Article suivant
  • Clinical features of sporadic hepatitis E virus infection in pregnant women in Shanghai, China
  • Fan Zhang, Jiefei Wang, Jilin Cheng, Xiaohong Zhang, Qiyu He, Liang Zhaochao, Jingyi Shu, Li Yan, Ling Wang, Lin Wang, Jianliang Zhang

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.