S'abonner

Exploring differential response to an emergency department-based care transition intervention - 30/11/21

Doi : 10.1016/j.ajem.2021.09.026 
Justine Seidenfeld, MD a, b, , Karen M. Stechuchak, MS a, Cynthia J. Coffman, PhD a, g, Elizabeth P. Mahanna, MPH a, Micaela N. Gladney, MPH a, Susan N. Hastings, MD, MHSc a, c, d, e, f
a Center of Innovation to Accelerate Discovery and Practice Transformation (ADAPT), Durham VA Health Care System, Durham, NC, USA 
b Division of Emergency Medicine, Duke University School of Medicine, Durham, NC, USA 
c Department of Medicine, Duke University School of Medicine, Durham, NC, USA 
d Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, NC, USA 
e Center for the Study of Human Aging and Development, Duke University School of Medicine, Durham, NC, USA 
f Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA 
g Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA 

Corresponding author at: ADAPT, Durham VA Health Care System, 411 W Chapel Hill St, Durham, NC 27701, USA.ADAPTDurham VA Health Care System411 W Chapel Hill StDurhamNC27701USA

Abstract

Objective

To identify multivariable subgroups of patients with differential responses to a nurse-delivered care transition intervention after an emergency department (ED) visit in a randomized controlled trial (RCT) using an emerging data-driven method.

Design

Secondary analysis of RCT.

Participants

512 individuals enrolled in an RCT of a nurse-delivered care transition intervention after an ED visit. All 512 participants were included in a pre-specified subgroup analysis, and 451 of these had sufficient complete case data to be included in a model-based recursive (MoB) partitioning analysis.

Methods

The primary outcome was having at least one ED visit in 30 days after the index ED visit. Two analytical methods explored heterogeneity of treatment effects: data driven model-based recursive partitioning (MoB) using 37 candidate baseline variables, and a contextual point of comparison with prespecified subgroups defined by ED super-user status (≥ 3 ED visits in previous 6 months or not), sex (male/female), and age, individually examined via treatment arm by subgroup interaction terms in logistic regression models. Internal validation of the MoB analysis via bootstrap resampling with an optimism corrected c-statistic was conducted to provide a bias-corrected estimate.

Results

MoB detected treatment effect heterogeneity in a single subgroup, marital status. Unmarried patients randomized to the intervention had a repeat ED use rate of 22% compared to 34% in the usual care group; married patients randomized to the intervention had a 27% ED return rate compared to 12% in the usual care group. Internal validation demonstrated an optimism corrected c-statistic of 0.54. No treatment-by-covariate subgroup interactions were identified among the 3 prespecified subgroups.

Conclusion

Although exploratory, the results of the MoB analysis suggest that patient factors related to social relationships such as marital status may be important contributors to differential response to a care transition intervention after an ED visit. These were characteristics that the investigators had not anticipated or planned to examine in the individual prespecified subgroup analysis. Data-driven methods can yield unexpected findings and contribute to a more complete understanding of differential treatment effects in subgroup analysis, which can inform further work on development of effective care transition interventions in the ED setting.

Le texte complet de cet article est disponible en PDF.

Keywords : Veterans, ED care transitions, Social support, Social relationships, Subgroup analysis, Heterogeneity of treatment effects


Plan


© 2021  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 50

P. 640-645 - décembre 2021 Retour au numéro
Article précédent Article précédent
  • Significance of medical intervention for non-traumatic hemorrhagic cardiac tamponade
  • Youichi Yanagawa, Kei Jitsuiki, Soichiro Ota, Ken-ichi Muramatsu, Yoshihiro Kushida, Hiroki Nagasawa, Ikuto Takeuchi, Hiromichi Ohsaka, Kazuhio Omori, Kouhei Ishikawa
| Article suivant Article suivant
  • Outcomes of atrial fibrillation in patients with COVID-19 pneumonia: A systematic review and meta-analysis
  • Ming-yue Chen, Fang-ping Xiao, Lin Kuai, Hai-bo Zhou, Zhi-qiang Jia, Meng Liu, Hao He, Mei Hong

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.