S'abonner

Prediction of mortality in COVID-19 through combing CT severity score with NEWS, qSOFA, or peripheral perfusion index - 30/11/21

Doi : 10.1016/j.ajem.2021.08.079 
Gökhan Akdur a, Murat Daş a, Okan Bardakci a, , Canan Akman a, Duygu Sıddıkoğlu b, Okhan Akdur a, Alper Akçalı c, Mesut Erbaş d, Mustafa Reşorlu e, Yavuz Beyazit f
a Department of Emergency Medicine, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 
b Department of Biostatistics, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 
c Department of Medical Microbiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 
d Department of Anesthesiology and Reanimation, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 
e Department of Radiology, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 
f Department of Internal Medicine, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Introduction

The assessment of disease severity and the prediction of clinical outcomes at early disease stages can contribute to decreased mortality in patients with Coronavirus disease 2019 (COVID-19). This study was conducted to develop and validate a multivariable risk prediction model for mortality with using a combination of computed tomography severity score (CT-SS), national early warning score (NEWS), and quick sequential (sepsis-related) organ failure assessment (qSOFA) in COVID-19 patients.

Methods

We retrospectively collected medical data from 655 adult COVID-19 patients admitted to our hospital between July and November 2020. Data on demographics, clinical characteristics, and laboratory and radiological findings measured as part of standard care at admission were used to calculate NEWS, qSOFA score, CT-SS, peripheral perfusion index (PPI) and shock index (SI). Logistic regression and Cox proportional hazard models were used to predict mortality, which was our primary outcome. The predictive accuracy of distinct scoring systems was evaluated by the receiver-operating characteristic (ROC) curve analysis.

Results

The median age was 50.0 years [333 males (50.8%), 322 females (49.2%)]. Higher NEWS and SI was associated with time-to-death within 90-days, whereas higher age, CT-SS and lower PPI were significantly associated with time-to-death within both 14 days and 90 days in the adjusted Cox regression model. The CT-SS predicted different mortality risk levels within each stratum of NEWS and qSOFA and improved the discrimination of mortality prediction models. Combining CT-SS with NEWS score yielded more accurate 14 days (DBA: −0.048, p = 0.002) and 90 days (DBA: −0.066, p < 0.001) mortality prediction.

Conclusion

Combining severity tools such as CT-SS, NEWS and qSOFA improves the accuracy of predicting mortality in patients with COVID-19. Inclusion of these tools in decision strategies might provide early detection of high-risk groups, avoid delayed medical attention, and improve patient outcomes.

Le texte complet de cet article est disponible en PDF.

Keywords : COVID-19, Computed tomography, Emergency medicine, Mortality


Plan


© 2021  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 50

P. 546-552 - décembre 2021 Retour au numéro
Article précédent Article précédent
  • Pulmonary embolism and COVID-19: A comparative analysis of different diagnostic models performance
  • Beatriz Valente Silva, Cláudia Jorge, Rui Plácido, Carlos Mendonça, Maria Luísa Urbano, Tiago Rodrigues, Joana Brito, Pedro Alves da Silva, Joana Rigueira, Fausto J. Pinto
| Article suivant Article suivant
  • Adherence to guideline creation recommendations for suicide prevention in the emergency department: A systematic review
  • Michael P. Wilson, Jaskiran Kaur, Lindsay Blake, Alison H. Oliveto, Ronald G. Thompson, Jeffrey M. Pyne, Lisa Wolf, A. Paige Walker, Angela D. Waliski, Kimberly Nordstrom

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.