S'abonner

Population health management of low-density lipoprotein cholesterol via a remote, algorithmic, navigator-executed program - 26/11/21

Doi : 10.1016/j.ahj.2021.08.017 
Jorge Plutzky, MD a, , Mark D. Benson, MD a, Kira Chaney, MPH a, Tiffany V. Bui, MPH a, Michael Kraft, PhD a, Lina Matta, PharmD a, Marian McPartlin, BA a, David Zelle, BA a, Christopher P. Cannon, MD a, Anton Dodek, MD b, Thomas A. Gaziano, MD a, Akshay S. Desai, MD a, Calum A. MacRae, MDPhD a, Benjamin M. Scirica, MD a, #
a Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 
b Blue Cross Blue Shield of Massachusetts, Boston, MA 

Reprint requests: Jorge Plutzky, MD, Division of Cardiovascular Medicine, Brigham and Women's Hospital, NRB 742, 77 Avenue Louis Pasteur, Boston MA 02115Division of Cardiovascular MedicineBrigham and Women's HospitalNRB 742, 77 Avenue Louis PasteurBostonMA02115

Résumé

Background

Implementation of guideline-directed cholesterol management remains low despite definitive evidence establishing such measures reduce cardiovascular (CV) events, especially in high atherosclerotic CV disease (ASCVD) risk patients. Modern electronic resources now exist that may help improve health care delivery. While electronic medical records (EMR) allow for population health screening, the potential for coupling EMR screening to remotely delivered algorithmic population-based management has been less studied as a way of overcoming barriers to optimal cholesterol management.

Methods

In an academically affiliated healthcare system, using EMR screening, we sought to identify 1,000 high ASCVD risk patients not meeting guideline-directed low-density lipoprotein-cholesterol (LDL-C) goals within specific system-affiliated primary care practices. Contacted patients received cholesterol education and were offered a remote, guideline-directed, algorithmic cholesterol management program executed by trained but non–licensed “navigators” under professional supervision. Navigators used telephone, proprietary software and internet resources to facilitate algorithm-driven, guideline-based medication initiation/titration, and laboratory testing until patients achieved LDL-C goals or exited the program. As a clinical effectiveness program for cholesterol guideline implementation, comparison was made to those contacted patients who declined program-based medication management, and received education only, along with their usual care.

Results

1021 patients falling into guideline-defined high ASCVD risk groups warranting statin therapy (ASCVD, type 2 diabetes, LDL ≥ 190 mg/dL, calculated 10-year ASCVD risk ≥7.5%) and not achieving guideline-defined target LDL-C levels and/or therapy were identified and contacted. Among the 698 such patients who opted for program medication management, significant LDL-C reductions occurred in the total cohort (mean -65.4 mg/dL, 45% decrease), and each high ASCVD risk subgroup: ASCVD (-57.2 mg/dL, -48.0%); diabetes mellitus (-53.1 mg/dL, -40.0%); severe hypercholesterolemia (-76.3 mg/dL, -45.7%); elevated ASCVD 10-year risk (-62.8 mg/dL, -41.1%) (P<0.001 for all), without any significant complications. Among 20% of participants with reported statin intolerance, average LDL-C decreased from baseline 143 mg/dL to 85 mg/dL using mainly statins and ezetimibe, with limited PCSK9 inhibitor use. In comparison, eligible high ASCVD risk patients who were contacted but opted for education only, a 17% LDL-C decrease occurred over a similar timeframe, with 80% remaining with an LDL-C over 100 mg/dL.

Conclusions

A remote, algorithm-driven, navigator-executed cholesterol management program successfully identified high ASCVD risk undertreated patients using EMR screening and was associated with significantly improved guideline-directed LDL-C control, supporting this approach as a novel strategy for improving health care access and delivery.

Le texte complet de cet article est disponible en PDF.

Plan


 This work was supported by Blue Cross Blue Shield of Massachusetts as a clinical effectiveness project.


© 2021  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 243

P. 15-27 - janvier 2022 Retour au numéro
Article précédent Article précédent
  • Relationship of ejection fraction and natriuretic peptide trajectories in heart failure with baseline reduced and mid-range ejection fraction
  • Kenneth C. Bilchick, Patrick Stafford, Olusola Laja, Comfort Elumogo, Persey Bediako, Nora Tolbert, Douglas Sawch, Sthuthi David, Nishtha Sodhi, Anita Barber, Younghoon Kwon, Nishaki Mehta, Brandy Patterson, Khadijah Breathett, Sula Mazimba
| Article suivant Article suivant
  • In vivo evidence of atherosclerotic plaque erosion and healing in patients with acute coronary syndrome using serial optical coherence tomography imaging
  • Yanwei Yin, Chao Fang, Senqing Jiang, Jifei Wang, Yidan Wang, Junchen Guo, Fangmeng Lei, Sibo Sun, Xueying Pei, Ruyi Jia, Lulu Li, Yini Wang, Huai Yu, Jiannan Dai, Bo Yu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.