S'abonner

An accurate artificial intelligence system for the detection of pulmonary and extra pulmonary Tuberculosis - 25/11/21

Doi : 10.1016/j.tube.2021.102143 
Anshu Sharma a, Anurag Sharma b, Rahul Malhotra c, Parulpreet Singh d, Ripon K. Chakrabortty e, Shubham Mahajan f, , Amit Kant Pandit f
a CT University, Ludhiana, 142024, India 
b GNA University, Phagwara, 144401, India 
c CT Group of Institutes, Jalandhar, 144008, India 
d Lovely Professional University, Phagwara, 144411, India 
e School of Engineering & IT, UNSW Canberra at ADFA, Australia 
f School of Electronics & Communication Engineering, Shri Mata Vaishno Devi University, Katra, 182320, India 

Corresponding author.

Abstract

Tuberculosis (TB) is the greatest irresistible illness in humans, caused by microbes Mycobacterium TB (MTB) bacteria and is an infectious disease that spreads from one individual to another through the air. It principally influences lung, which is termed Pulmonary TB (PTB). However, it can likewise influence other parts of the body such as the brain, bones and lymph nodes. Hence, it is also referred to as Extra Pulmonary TB (EPTB). TB has normal symptoms, so without proper testing, it is hard to detect if a patient has TB or not. In this paper, an accurate and novel system for diagnosing TB (PTB and EPTB) has been designed using image processing and AI-based classification techniques. The designed system is comprised of two phases. Firstly, the X-Ray image is processed using preprocessing, segmentation and features extraction and then, three different AI-based techniques are applied for classification. For image processing, ‘Histogram Filter’ and ‘Median Filter’ are applied with the CLAHE process to retrieve the segmented image. Then, classification based on AI techniques is done. The designed system produces the accuracy of 98%, 83%, and 89% for Decision Tree, SVM, and Naïve Bayes Classifier, respectively and has been validated by the doctors of the Jalandhar, India.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

In this research work, an artificial intelligence (AI) based system has been designed for the accurate and early diagnosis of the Tuberculosis (TB). For carrying out this work, a comparative study of the literature has been done. It has been found that most of the work emphasized on the diagnosis of Pulmonary Tuberculosis and there is no significant work found for the diagnosis of Pulmonary Tuberculosis (PTB) as well as Extra Pulmonary Tuberculosis (EPTB). The proposed system is designed to detect PTB as well as EPTB using AI based learning techniques. The designed system is implemented in two phases. In the first phase, the X-Ray image is processed using image pre-processing, segmentation and features extraction. In the second phase, the classification is done using three different AI-based techniques. For image processing, ‘Histogram Filter’ and ‘Median Filter’ are applied with the CLAHE process to retrieve the segmented image. Then, classification based on Decision Tree, Naïve Bayes, and SVM has been done. The designed system produces the accuracy of 98%, 83%, and 89% for Decision Tree, SVM, and Naïve Bayes Classifier, respectively.



Image 1

Le texte complet de cet article est disponible en PDF.

Keywords : Tuberculosis diagnosis, PTB, EPTB, Computer-based diagnosis, X-ray images, Enhancement, Classification, Pre-processing


Plan


© 2021  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 131

Article 102143- décembre 2021 Retour au numéro
Article précédent Article précédent
  • A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction
  • Nguyen Phuoc Long, Nguyen Ky Phat, Nguyen Thi Hai Yen, Seongoh Park, Yumi Park, Yong-Soon Cho, Jae-Gook Shin
| Article suivant Article suivant
  • Whole-genome sequencing as a tool for studying the microevolution of drug-resistant serial Mycobacterium tuberculosis isolates
  • Jaciara de Lourdes do Carmo Guimarães Diniz, Andrea von Groll, Gisela Unis, Elis Regina Dalla-Costa, Maria Lúcia Rosa Rossetti, Júlia Silveira Vianna, Daniela Fernandes Ramos, Ana Júlia Reis, Priscila Cristina Bartolomeu Halicki, João Luis Rheingantz Scaini, Yasmin Castillos de Ibrahim das Neves, Jody Phelan, Ana Rita Gomes, Susana Campino, Karina dos Santos Machado, Adriano Velasque Werhli, Arnab Pain, Taane Gregory Clark, João Perdigão, Miguel Viveiros, Isabel Portugal, Pedro Eduardo Almeida Silva

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.