S'abonner

Deep learning for lung disease segmentation on CT: Which reconstruction kernel should be used? - 16/11/21

Doi : 10.1016/j.diii.2021.10.001 
Trieu-Nghi Hoang-Thi a, b, Maria Vakalopoulou c, Stergios Christodoulidis c, Nikos Paragios c, d, Marie-Pierre Revel a, b, Guillaume Chassagnon a, b,
a Université de Paris, Faculté de Médecine, 75006 Paris, France 
b Department of Radiology, Hôpital Cochin, AP-HP.centre, 75014 Paris, France 
c Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, 3 91190 Gif-sur-Yvette, France 
d TheraPanacea, 75014 Paris, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Highlights

The choice of the CT reconstruction kernel impacts the performance of deep learning-based segmentation models.
Segmentation models perform better when the same reconstruction kernels are used in the training and the test datasets.
Segmentation models trained on both mediastinal and lung kernels perform better than those trained on only one kernel.

Le texte complet de cet article est disponible en PDF.

Abstract

Purpose

The purpose of this study was to determine whether a single reconstruction kernel or both high and low frequency kernels should be used for training deep learning models for the segmentation of diffuse lung disease on chest computed tomography (CT).

Materials and methods

Two annotated datasets of COVID-19 pneumonia (323,960 slices) and interstitial lung disease (ILD) (4,284 slices) were used. Annotated CT images were used to train a U-Net architecture to segment disease. All CT slices were reconstructed using both a lung kernel (LK) and a mediastinal kernel (MK). Three different trainings, resulting in three different models were compared for each disease: training on LK only, MK only or LK+MK images. Dice similarity scores (DSC) were compared using the Wilcoxon signed-rank test.

Results

Models only trained on LK images performed better on LK images than on MK images (median DSC = 0.62 [interquartile range (IQR): 0.54, 0.69] vs. 0.60 [IQR: 0.50, 0.70], P < 0.001 for COVID-19 and median DSC = 0.62 [IQR: 0.56, 0.69] vs. 0.50 [IQR 0.43, 0.57], P < 0.001 for ILD). Similarly, models only trained on MK images performed better on MK images (median DSC = 0.62 [IQR: 0.53, 0.68] vs. 0.54 [IQR: 0.47, 0.63], P < 0.001 for COVID-19 and 0.69 [IQR: 0.61, 0.73] vs. 0.63 [IQR: 0.53, 0.70], P < 0.001 for ILD). Models trained on both kernels performed better or similarly than those trained on only one kernel. For COVID-19, median DSC was 0.67 (IQR: =0.59, 0.73) when applied on LK images and 0.67 (IQR: 0.60, 0.74) when applied on MK images (P < 0.001 for both). For ILD, median DSC was 0.69 (IQR: 0.63, 0.73) when applied on LK images (P = 0.006) and 0.68 (IQR: 0.62, 0.72) when applied on MK images (P > 0.99).

Conclusion

Reconstruction kernels impact the performance of deep learning-based models for lung disease segmentation. Training on both LK and MK images improves the performance.

Le texte complet de cet article est disponible en PDF.

Keywords : Deep learning, Multidector computed tomography, Lung

Abbreviations : COVID-19, CT, DL, DSC, ILD, IQR, LK, MK


Plan


© 2021  Société française de radiologie. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 102 - N° 11

P. 691-695 - novembre 2021 Retour au numéro
Article précédent Article précédent
  • Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
  • Nicolas Gogin, Mario Viti, Luc Nicodème, Mickaël Ohana, Hugues Talbot, Umit Gencer, Magloire Mekukosokeng, Thomas Caramella, Yann Diascorn, Jean-Yves Airaud, Marc-Samir Guillot, Zoubir Bensalah, Caroline Dam Hieu, Bassam Abdallah, Imad Bousaid, Nathalie Lassau, Elie Mousseaux
| Article suivant Article suivant
  • Immune checkpoint inhibitor-induced hypophysitis
  • David Dudoignon, Sarah Guégan, Maxime Barat

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.