S'abonner

Cardiac markers of multisystem inflammatory syndrome in children (MIS-C) in COVID-19 patients: A meta-analysis - 29/10/21

Doi : 10.1016/j.ajem.2021.05.044 
Yan Zhao a , Jenil Patel b, Ying Huang c, Lijuan Yin c, , Lei Tang a, ⁎⁎
a Department of Pediatrics, People's Hospital of Chongqing Banan District, Chongqing 401320, China 
b Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Dallas, TX, USA 
c Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China 

Correspondence to: L Yin, Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.Department of Respiratory MedicineChildren's Hospital of Chongqing Medical UniversityChongqing400014China⁎⁎Correspondence to: L Tang, Department of Pediatrics, People's Hospital of Chongqing Banan District, Chongqing 401320, China.Department of PediatricsPeople's Hospital of Chongqing Banan DistrictChongqing401320China

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Objective

A meta-analysis of laboratory cardiac markers for multisystem inflammatory syndrome in children (MIS-C) was performed in patients with coronavirus disease 2019 (COVID-19).

Methods

Eight databases were searched until April 10, 2021, for studies on cardiac markers, including B-type natriuretic peptide (BNP)/N-terminal pro-BNP (NT-proBNP), troponin, aspartate aminotransferase (AST), in MIS-C patients.

Results

Of the 2583 participants enrolled in 24 studies, 1613 patients were diagnosed with MIS-C. MIS-C patients exhibited higher BNP levels than patients with non-severe COVID-19 [SMD (95% CI): 1.13 (0.48, 1.77), p < 0.05]. No significant differences in BNP levels were observed between patients with MIS-C and severe COVID-19 [SMD (95% CI): 0.29 (−0.07, 0.65), p = 0.117]. Comparisons of MIS-C patients to all COVID-19 patients revealed no significant differences in levels of troponin [SMD (95% CI): 0.13 (−0.07, 0.32), p = 0.212] or AST [SMD (95% CI): 0.10 (−0.11, 0.31), p = 0.336]. Compared to patients with non-severe MIS-C, those with severe MIS-C exhibited higher levels of BNP [SMD (95% CI): 0.26 (0.04, 0.48), p < 0.05], but no differences in troponin [SMD (95% CI): 0.05 (−0.06, 0.16) p = 0.387] or AST [SMD (95% CI): 0.19 (−0.34, 0.71), p = 0.483] were observed. Moreover, there was no significant difference in BNP [SMD (95% CI): −0.21 (−1.07, 0.64), p = 0.624] or troponin [SMD (95% CI): −0.07 (−0.45, 0.31), p = 0.710] between MIS-C with and without coronary artery abnormality. Sensitivity analyses were performed to assess stability. No publication bias was detected based on Begg's test.

Conclusions

The key cardiac marker that showed differences between patients with MIS-C/non-severe COVID-19 and between patients with severe/non-severe MIS-C was BNP. Other markers, such as troponin and AST, did not exhibit notable differences in indicating cardiac injury between patients with MIS-C and COVID-19.

Le texte complet de cet article est disponible en PDF.

Highlights

Severe MIS-C patients showed higher BNP than non-severe MIS-C patients, but no differences in troponin or AST were observed.
MIS-C patients exhibited higher BNP levels than non-severe COVID-19 patients, but noted equal to severe COVID-19 patients.
No significant differences were noted in troponin and AST levels between MIS-C patients and COVID-19 patients.
BNP and troponin levels were not significantly different between MIS-C patients with and without CAA.

Le texte complet de cet article est disponible en PDF.

Keywords : COVID-19, PMIS/PIMS-TS/MIS-C, BNP, Troponin, Children, Meta-analysis

Abbreviations : ACE2, AST, BNP, COVID-19, CAA, FEM, ICU, MIS-C, NT-proBNP, REM, SMD, SARS-CoV-2, 95%CI


Plan


© 2021  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 49

P. 62-70 - novembre 2021 Retour au numéro
Article précédent Article précédent
  • Automated tracking of emergency department abdominal CT findings during the COVID-19 pandemic using natural language processing
  • Matthew D. Li, Peter A. Wood, Tarik K. Alkasab, Michael H. Lev, Jayashree Kalpathy-Cramer, Marc D. Succi
| Article suivant Article suivant
  • Does a short intervention with vibration foam roller recover lifeguards better after a water rescue? A pilot study
  • Alejandra Alonso-Calvete, Antón Lage-Rey, Miguel Lorenzo-Martínez, Ezequiel Rey

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.