Improving Machine Learning Technology in the Field of Sleep - 26/10/21
Résumé |
The authors discuss the challenges of machine- and deep learning–based automatic analysis of obstructive sleep apnea with respect to known issues with the signal interpretation, patient physiology, and the apnea-hypopnea index. Their goal is to provide guidance for sleep and machine learning professionals working in this area of sleep medicine. They suggest that machine learning approaches may well be better targeted at examining and attempting to improve the diagnostic criteria, in order to build a more nuanced understanding of the detailed circumstances surrounding OSA, rather than merely attempting to reproduce human scoring.
Le texte complet de cet article est disponible en PDF.Keywords : Sleep apnea, Deep learning, Polysomnography, Sleep staging
Plan
Funding: The Icelandic Research Fund (174067-053, 175256-0611) and NordForsk grant no.90458. |
Vol 16 - N° 4
P. 557-566 - décembre 2021 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?