Intelligence artificielle, radiomique et « big data » : principes et technique - 06/10/21
pages | 10 |
Iconographies | 5 |
Vidéos | 0 |
Autres | 0 |
Résumé |
L'intelligence artificielle (IA) englobe une grande variété de domaines, dont l'apprentissage automatique et l'apprentissage profond qui sont le plus souvent utilisés pour les images médicales. L'apprentissage machine comprend des méthodes ou les machines « apprennent » par itérations à partir des données elles-mêmes plutôt que selon un set de règles qui lui sont fournies à l'avance par l'homme. Parmi l'apprentissage machine, les algorithmes basés sur des réseaux de neurones ont montré des performances très élevées dans de multiples tâches d'analyse d'images. Le développement de ces modèles requiert un nombre important de données représentatives de la population cible et pour lesquelles la « vérité terrain » est connue. Les applications des outils d'IA en imagerie médicale comprennent la détection et la caractérisation des lésions, mais aussi la segmentation et le recalage, l'amélioration de la qualité image, la facilitation du flux de travail clinique, l'extraction et l'analyse de grands volumes de données quantitatives à partir des images (radiomique), ou le guidage des procédures de radiologie interventionnelle. La radiomique est quant à elle une approche axée sur la découverte visant à extraire de grands ensembles de descripteurs complexes à partir d'images cliniques, et utilise des méthodes d'apprentissage automatique et/ou profond pour extraire des descripteurs et les corréler à une cible souhaitée. Les limites des méthodes d'IA comprennent l'absence de généralisabilité des modèles, l'effet « boîte noire » qui limite la compréhension humaine des modèles et des résultats, le manque de détection et de gestion des erreurs des modèles. La plupart des outils sont au stade de prototypes, ou en cours de validation clinique. Il reste encore à déterminer le réel impact en termes de qualité (pour le diagnostic, la prise en charge du patient ou la réalisation des tâches des manipulateurs ou radiologues) et comment les intégrer dans le flux de travail des services de radiologie.
Le texte complet de cet article est disponible en PDF.Mots-clés : Intelligence artificielle, Imagerie médicale, Radiomique, Traitement d'images, Computer-Aided Diagnosis
Plan
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à ce traité ?