S'abonner

Implementation of Neural Networks to Frontal Electroencephalography for the Identification of the Transition Responsiveness/Unresponsiveness During Induction of General Anesthesia - 23/09/21

Doi : 10.1016/j.irbm.2021.02.004 
A.L. Ferreira a, b, , S. Vide b, c, C.S. Nunes a, b, d, J. Neto b, P. Amorim b, J. Mendes a
a INEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal 
b Centro de Investigação Clínica em Anestesiologia, Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal 
c Departamento de Anestesia, Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano, Rua de Dr. Eduardo Torres, 4464-513 Sra. da Hora, Portugal 
d Departamento de Ciências e Tecnologia, Universidade Aberta, Delegação do Porto, Rua do Amial 752, 4200-055 Porto, Portugal 

Corresponding author at: Centro de Investigação Clínica em Anestesiologia, Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal.Centro de Investigação Clínica em AnestesiologiaServiço de AnestesiologiaCentro Hospitalar do PortoLargo Professor Abel SalazarPorto4099-001Portugal

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 8
Iconographies 6
Vidéos 0
Autres 0

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Detect the moment patients transit to unresponsiveness during general anesthesia.
Importance of personalizing information on anesthetic requirements.
The usefulness of a Convolutional Network to learn the raw EEG for classification.
Our model was able to identify the transition to unresponsiveness successfully.

Le texte complet de cet article est disponible en PDF.

Abstract

Objective

General anesthesia is a reversible drug-induced state of altered arousal characterized by loss of responsiveness (LOR) due to brainstem inactivation. Precise identification of the LOR during the induction of general anesthesia is extremely important to provide personalized information on anesthetic requirements and could help maintain an adequate level of anesthesia throughout surgery, ensuring safe and effective care and balancing the avoidance of intraoperative awareness and overdose. So, main objective of this paper was to investigate whether a Convolutional Neural Network (CNN) applied to bilateral frontal electroencephalography (EEG) dataset recorded from patients during opioid-propofol anesthetic procedures identified the exact moment of LOR.

Material and methods

A clinical protocol was designed to allow for the characterization of different clinical endpoints throughout the transition to unresponsiveness. Fifty (50) patients were enrolled in the study and data from all was included in the final dataset analysis. While under a constant estimated effect-site concentration of 2.5 ng/mL of remifentanil, an 1% propofol infusion was started at 3.3 mL//h until LOR. The level of responsiveness was assessed by an anesthesiologist every six seconds using a modified version of the Richmond Agitation-Sedation Scale (aRASS). The frontal EEG was acquired using a bilateral bispectral (BIS VISTA™ v2.0, Medtronic, Ireland) sensor. EEG data was then split into 5-second epochs, and for each epoch, the anesthesiologist's classification was used to label it as responsiveness (no-LOR) or unresponsiveness (LOR). All 5-second epochs were then used as inputs for the CNN model to classify the untrained segment as no-LOR or LOR.

Results

The CNN model was able to identify the transition from no-LOR to LOR successfully, achieving 97.90±0.07% accuracy on the cross-validation set.

Conclusion

The obtained results showed that the proposed CNN model was quite efficient in the responsiveness/unresponsiveness classification. We consider our approach constitutes an additional technique to the current methods used in the daily clinical setting where LOR is identified by the loss of response to verbal commands or mechanical stimulus. We therefore hypothesized that automated EEG analysis could be a useful tool to detect the moment of LOR, especially using machine learning approaches.

Le texte complet de cet article est disponible en PDF.

Keywords : Anesthesia, Propofol, Remifentanil, Loss of responsiveness, Electroencephalogram, Deep neural network, Convolution neural networks


Plan


 Financial Disclosures: This work was supported by the Fundação para a Ciência e a Tecnologia under the SFRH/BD/98915/2013 and through INEGI, under LAETA, projects UIDB/50022/2020 and UIDP/50022/2020.


© 2021  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 42 - N° 5

P. 390-397 - octobre 2021 Retour au numéro
Article précédent Article précédent
  • White Blood Cells Image Classification Using Deep Learning with Canonical Correlation Analysis
  • A.M. Patil, M.D. Patil, G.K. Birajdar

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.