Modified Fuzzy Q Learning Based Classifier for Pneumonia and Tuberculosis - 23/09/21
pages | 9 |
Iconographies | 10 |
Vidéos | 0 |
Autres | 0 |
Graphical abstract |
Highlights |
• | Modified fuzzy Q-learning based pneumonia and tuberculosis classification. |
• | Wavelet transform is employed to extract time-frequency domain features. |
• | Average classification accuracy is 96.75% for pneumonia and 90.85% for TB classes. |
Abstract |
This work proposes reinforcement learning for correctly identifying pneumonia and tuberculosis (TB) using a repository of X ray images. To our knowledge, this is a first attempt at employing reinforcement learning for pneumonia and TB classification. In particular, modified fuzzy Q learning (MFQL) algorithm in conjunction with wavelet based pre-processing has been used to build a classifier for identifying pneumonia and tuberculosis's severity. Proposed classifier is a self-learning one and uses pneumonia dataset (no pneumonia, mild pneumonia and severe pneumonia) and tuberculosis dataset (TB present, TB absent) samples to classify X ray images of subjects. Results indicate that MFQL based approach achieves high accuracy and fares much better over contemporary Support Vector Machine (SVM) and k-Nearest Neighbor (KNN) classifiers. Proposed classifier can be a useful tool for pneumonia and tuberculosis diagnosis in a practical setting.
Le texte complet de cet article est disponible en PDF.Keywords : Pneumonia, Tuberculosis, Wavelet transform, Modified fuzzy Q learning
Plan
Vol 42 - N° 5
P. 369-377 - octobre 2021 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?