S'abonner

Combined Metaheuristic Algorithm and Radiomics Strategy for the Analysis of Neuroanatomical Structures in Schizophrenia and Schizoaffective Disorders - 23/09/21

Doi : 10.1016/j.irbm.2020.10.006 
M. Latha , G. Kavitha
 Department of Electronics Engineering, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 16
Iconographies 15
Vidéos 0
Autres 0

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Shape prior level set effectively segments the brain regions from psychotic MR images.
Radiomic features significantly capture the shape and pattern variations from regions.
The BPSO-FSVM classifier identifies the relevant features and discriminate psychotic subjects.
Cerebellum region shows significant variations and used as a biomarker.

Le texte complet de cet article est disponible en PDF.

Abstract

Objectives

Schizophrenia (SZ) is the most chronic disabling psychotic brain disorder. It is characterized by delusions and auditory hallucinations, as well as impairments in memory. Schizoaffective (SA) signs are co-morbid with SZ and are characterized by symptoms of SZ and mood disorder. Various researches suggest that SZ and SA share a number of equally severe cognitive deficits, but the pathophysiology has not yet been addressed in a comprehensive way. In this work, the heterogeneity in whole brain, ventricle and cerebellum region from psychotic MR brain images is examined using Machine learning and radiomic features.

Materials and methods

T1 weighted MR brain images are obtained from Schizconnect database for the analysis. The shape prior level set method is used to segment the ventricle and cerebellum structures. The radiomic features which include shape and texture are extracted from these regions to discriminate the SZ and SA subjects. The performance of these features is evaluated with Binary Particle Swarm Optimization (BPSO) based Fuzzy Support Vector Machine (FSVM) classifier.

Results

The shape constrained Level Set method is able to better segment ventricles and cerebellum regions from the images. The significant features that are extracted from whole brain, ventricle and cerebellum are identified by the BPSO based FSVM. The combination of radiomic features extracted from cerebellum region achieved high classification accuracy (90.09%) using metaheuristic algorithm. The extracted features from cerebellum are correlated with PANSS score. The causal analysis shows that there is an association been the tissue texture variation in identifying the disease severity. The symmetry analysis shows that left brain mean area is larger than the right side area. In particular SA has low cerebellum area compared to SZ. The radiomic features such as Hermite, Laws and tensor extracted from the left cerebellum show a significant texture variation in all the considered subjects (p<0.0001).

Conclusions

The results are clinically relevant in discriminating the pattern change in the structure, hence this biomarker and frame work could be used for the severity study of psychotic disorders.

Le texte complet de cet article est disponible en PDF.

Keywords : Schizophrenia, Schizoaffective, Radiomic, Metaheuristic, Classifier


Plan


© 2020  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 42 - N° 5

P. 353-368 - octobre 2021 Retour au numéro
Article précédent Article précédent
  • An Approach Based on Mutually Informed Neural Networks to Optimize the Generalization Capabilities of Decision Support Systems Developed for Heart Failure Prediction
  • L. Ali, S.A.C. Bukhari
| Article suivant Article suivant
  • Modified Fuzzy Q Learning Based Classifier for Pneumonia and Tuberculosis
  • A. Kukker, R. Sharma

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.