Epigallocatechin-3-gallate plays more predominant roles than caffeine for inducing actin-crosslinking, ubiquitin/proteasome activity and glycolysis, and suppressing angiogenesis features of human endothelial cells - 03/09/21
pages | 12 |
Iconographies | 10 |
Vidéos | 0 |
Autres | 0 |
Abstract |
A recent expression proteomics study has reported changes in cellular proteome (set of proteins) of human endothelial cells (ECs) induced by caffeine and epigallocatechin-3-gallate (EGCG), the most abundant bioactive compounds in coffee and green tea, respectively. Although both common and differential changes were highlighted by bioinformatics prediction, no experimental validation was performed. Herein, we reanalyzed these proteome datasets and performed protein-protein interactions network analysis followed by functional investigations using various assays to address the relevance of such proteome changes in human ECs functions. Protein-protein interactions network analysis revealed actin-crosslink formation, ubiquitin-proteasome activity and glycolysis as the three main networks among those significantly altered proteins induced by caffeine and EGCG. The experimental data showed predominant increases of actin-crosslink formation, ubiquitin-proteasome activity, and glycolysis (as reflected by increased F-actin and β-actin, declined ubiquitinated proteins and increased intracellular ATP, respectively) in the EGCG-treated cells. Investigations on angiogenesis features revealed that EGCG predominantly reduced ECs proliferation, migration/invasion, endothelial tube formation (as determined by numbers of nodes/junctions and meshes), barrier function (as determined by levels of VE-cadherin, zonula occludens-1 (ZO-1) and transendothelial resistance (TER)), and angiopoietin-2 secretion. However, both caffeine and EGCG had no effects on matrix metalloproteinase-2 (MMP-2) secretion. These data indicate that EGCG exhibits more potent effects on human ECs functions to induce actin-crosslink, ubiquitin-proteasome activity and glycolysis, and to suppress angiogenesis processes that commonly occur in various diseases, particularly cancers.
Le texte complet de cet article est disponible en PDF.Graphical Abstract |
Highlights |
• | EGCG had greater promoting effects than caffeine on actin crosslinking. |
• | EGCG more potently induces degradation of ubiquitinated proteins. |
• | EGCG more potently increases intracellular ATP in endothelial cells (ECs). |
• | EGCG had more potent effects to suppress angiogenesis processes. |
• | Overall, EGCG plays more predominant roles than caffeine on ECs functions. |
Keywords : Actin crosslink, Angiogenesis, Angiopoietin, Glycolysis, Proteasome, Ubiquitin
Plan
Vol 141
Article 111837- septembre 2021 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?