S'abonner

Augmentation of Tissue Perfusion with Contrast Ultrasound: Influence of Three-Dimensional Beam Geometry and Conducted Vasodilation - 03/08/21

Doi : 10.1016/j.echo.2021.02.018 
Matthew A. Muller, BA a, Todd Belcik, BS, ACS, RDCS a, James Hodovan, MS, RDCS a, Koya Ozawa, MD a, Eran Brown, MS a, Jeffry Powers, PhD b, Paul S. Sheeran, PhD b, Jonathan R. Lindner, MD a, c,
a Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 
b Philips Ultrasound, Bothell, Washington 
c Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 

Reprint requests: Jonathan R. Lindner, MD, Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.Knight Cardiovascular InstituteUHN-62Oregon Health & Science University3181 SW Sam Jackson Park RoadPortlandOR97239

Abstract

Background

Cavitation of microbubble contrast agents with ultrasound produces shear-mediated vasodilation and an increase in tissue perfusion. We investigated the influence of the size of the cavitation volume by comparing flow augmentation produced by two-dimensional (2D) versus three-dimensional (3D) therapeutic ultrasound. We also hypothesized that cavitation could augment flow beyond the ultrasound field through release of vasodilators that are carried downstream.

Methods

In 11 rhesus macaques, cavitation of intravenously administered lipid-shelled microbubbles was performed in the proximal forearm flexor muscles unilaterally for 10 min. Ultrasound cavitation (1.3 MHz, 1.5 MPa peak negative pressure) was performed with 2D or 3D transmission with beam elevations of 5 and 25 mm, respectively, and pulsing intervals (PIs) sufficient to allow complete postdestruction refill (5 and 12 sec for 2D and 3D, respectively). Contrast ultrasound perfusion imaging was performed before and after cavitation, using multiplane assessment within and beyond the cavitation field in 1.5-cm increments. Cavitation in the hindlimb of mice using 2D ultrasound at a PI of 1 or 5 sec was performed to examine microvascular flow changes from cavitation in only arteries versus the microcirculation.

Results

In primates, the degree of muscle flow augmentation in the center of the cavitation field was similar for 2D and 3D conditions (five- to sixfold increase for both, P < .01 vs baseline). The spatial extent of flow augmentation was only modestly greater for 3D cavitation because of an increase in perfusion with 2D transmission that was detected outside of the cavitation field. In mice, cavitation in the microvascular compartment (PI 5 sec) produced the greatest degree of flow augmentation, yet cavitation in the arterial compartment (PI 1 sec) still produced a three- to fourfold increase in flow (P < .001 vs control). The mechanism for flow augmentation beyond the cavitation zone was investigated by in vitro studies that demonstrated cavitation-related release of vasodilators, including adenosine triphosphate and nitric oxide, from erythrocytes and endothelial cells.

Conclusions

Compared with 2D transmission, 3D cavitation of microbubbles generates a similar degree of muscle flow augmentation, possibly because of a trade-off between volume of cavitation and PI, and only modestly increases the spatial extent of flow augmentation because of the ability of cavitation to produce conducted effects beyond the ultrasound field.

Le texte complet de cet article est disponible en PDF.

Highlights

Ultrasound cavitation can increase tissue blood flow through shear effects.
3-D versus 2D cavitation modestly increases the extent of flow augmentation
Cavitation releases vasodilators from endothelium and RBCs that flow downstream.

Le texte complet de cet article est disponible en PDF.

Keywords : Cavitation, Contrast ultrasound, Microbubbles, Theranostics

Abbreviations : 2D, 3D, ATP, CEU, MB, NCMBV, NHP, NO, PI, RBC


Plan


 Dr. Lindner is supported by grants R01-HL078610, R01-HL130046, and P51-OD011092 from the National Institutes of Health and by grant 18-18HCFBP_2-0009 from NASA. Dr. Ozawa is supported by the Japan Society for the Promotion of Science Overseas Research Fellowship and Manpei Suzuki Diabetes Foundation. Mr. Brown was supported by predoctoral grant 18PRE33960532 from the American Heart Association.
 Drs. Powers and Sheeran are employees of Philips Ultrasound. Their primary responsibility was to design programmed ultrasound transmission schemes on the ultrasound system.


© 2021  American Society of Echocardiography. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 34 - N° 8

P. 887-895 - août 2021 Retour au numéro
Article précédent Article précédent
  • Dynamic Systolic Changes in Tricuspid Regurgitation Vena Contracta Size and Proximal Isovelocity Surface Area in Hypoplastic Left Heart Syndrome: A Three-Dimensional Color Doppler Echocardiographic Study
  • Ling Li, Timothy M. Colen, Vivek Jani, Benjamin T. Barnes, Mary Craft, Edythe Tham, Nee Scze Khoo, Jeffrey Smallhorn, David A. Danford, Shelby Kutty
| Article suivant Article suivant
  • Delayed Echo Enhancement Imaging to Quantify Myocardial Infarct Size
  • Ping Zeng, Lijun Qian, John Lof, Elizabeth Stolze, Soufiane El Kadi, Thomas Bargar, Jiri Sklenar, Terry Matsunaga, Feng Xie, Thomas R. Porter

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.