S'abonner

Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study - 29/07/21

Doi : 10.1016/S1473-3099(21)00057-8 
Peter C Jentsch, BSc a, b, Madhur Anand, ProfPhD b, Chris T Bauch, ProfPhD a,
a Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada 
b School of Environmental Sciences, University of Guelph, Guelph, ON, Canada 

* Correspondence to: Prof Chris T Bauch, Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Department of Applied Mathematics University of Waterloo Waterloo ON N2L 3G1 Canada

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Summary

Background

During the COVID-19 pandemic, authorities must decide which groups to prioritise for vaccination in a shifting social–epidemiological landscape in which the success of large-scale non-pharmaceutical interventions requires broad social acceptance. We aimed to compare projected COVID-19 mortality under four different strategies for the prioritisation of SARS-CoV-2 vaccines.

Methods

We developed a coupled social–epidemiological model of SARS-CoV-2 transmission in which social and epidemiological dynamics interact with one another. We modelled how population adherence to non-pharmaceutical interventions responds to case incidence. In the model, schools and workplaces are also closed and reopened on the basis of reported cases. The model was parameterised with data on COVID-19 cases and mortality, SARS-CoV-2 seroprevalence, population mobility, and demography from Ontario, Canada (population 14·5 million). Disease progression parameters came from the SARS-CoV-2 epidemiological literature. We assumed a vaccine with 75% efficacy against disease and transmissibility. We compared vaccinating those aged 60 years and older first (oldest-first strategy), vaccinating those younger than 20 years first (youngest-first strategy), vaccinating uniformly by age (uniform strategy), and a novel contact-based strategy. The latter three strategies interrupt transmission, whereas the first targets a vulnerable group to reduce disease. Vaccination rates ranged from 0·5% to 5% of the population per week, beginning on either Jan 1 or Sept 1, 2021.

Findings

Case notifications, non-pharmaceutical intervention adherence, and lockdown undergo successive waves that interact with the timing of the vaccine programme to determine the relative effectiveness of the four strategies. Transmission-interrupting strategies become relatively more effective with time as herd immunity builds. The model predicts that, in the absence of vaccination, 72 000 deaths (95% credible interval 40 000–122 000) would occur in Ontario from Jan 1, 2021, to March 14, 2025, and at a vaccination rate of 1·5% of the population per week, the oldest-first strategy would reduce COVID-19 mortality by 90·8% on average (followed by 89·5% in the uniform, 88·9% in the contact-based, and 88·2% in the youngest-first strategies). 60 000 deaths (31 000–108 000) would occur from Sept 1, 2021, to March 14, 2025, in the absence of vaccination, and the contact-based strategy would reduce COVID-19 mortality by 92·6% on average (followed by 92·1% in the uniform, 91·0% in the oldest-first, and 88·3% in the youngest-first strategies) at a vaccination rate of 1·5% of the population per week.

Interpretation

The most effective vaccination strategy for reducing mortality due to COVID-19 depends on the time course of the pandemic in the population. For later vaccination start dates, use of SARS-CoV-2 vaccines to interrupt transmission might prevent more deaths than prioritising vulnerable age groups.

Funding

Ontario Ministry of Colleges and Universities.

Le texte complet de cet article est disponible en PDF.

Plan


© 2021  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 21 - N° 8

P. 1097-1106 - août 2021 Retour au numéro
Article précédent Article précédent
  • Performance and operational feasibility of antigen and antibody rapid diagnostic tests for COVID-19 in symptomatic and asymptomatic patients in Cameroon: a clinical, prospective, diagnostic accuracy study
  • Yap Boum, Karl Njuwa Fai, Birgit Nikolay, Akenji Blaise Mboringong, Lisa M Bebell, Mark Ndifon, Aristide Abbah, Rachel Essaka, Lucrèce Eteki, Francisco Luquero, Céline Langendorf, Nicole Fouda Mbarga, Rene Ghislain Essomba, Bongkiyung Donald Buri, Tchoula Mamiafo Corine, Bertrand Tchualeu Kameni, Nadia Mandeng, Mahamat Fanne, Anne-Cécile Zoung-Kani Bisseck, Clement B Ndongmo, Sara Eyangoh, Achta Hamadou, Jean Patrick Ouamba, Modeste Tamakloé Koku, Richard Njouom, Okomo Marie Claire, Linda Esso, Emilienne Epée, Georges Alain Etoundi Mballa
| Article suivant Article suivant
  • Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials
  • Shilong Yang, Yan Li, Lianpan Dai, Jianfeng Wang, Peng He, Changgui Li, Xin Fang, Chenfei Wang, Xiang Zhao, Enqi Huang, Changwei Wu, Zaixin Zhong, Fengze Wang, Xiaomin Duan, Siyu Tian, Lili Wu, Yan Liu, Yi Luo, Zhihai Chen, Fangjun Li, Junhua Li, Xian Yu, Hong Ren, Lihong Liu, Shufang Meng, Jinghua Yan, Zhongyu Hu, Lidong Gao, George F Gao

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.