S'abonner

Importance of Systematic Right Ventricular Assessment in Cardiac Resynchronization Therapy Candidates: A Machine Learning Approach - 03/05/21

Doi : 10.1016/j.echo.2020.12.025 
Elena Galli, MD, PhD a, Virginie Le Rolle, PhD a, Otto A. Smiseth, MD, PhD b, Jurgen Duchenne, PhD c, d, John M. Aalen, MD b, Camilla K. Larsen, MD b, Elif A. Sade, MD, PhD e, Arnaud Hubert, MD a, Smitha Anilkumar, MD f, Martin Penicka, MD, PhD g, Cecilia Linde, MD, PhD h, Christophe Leclercq, MD, PhD a, Alfredo Hernandez, PhD a, Jens-Uwe Voigt, MD, PhD c, d, Erwan Donal, MD, PhD a,
a Université de Rennes, CHU Rennes, Inserm, LTSI – UMR 1099, Rennes, France 
b Institute for Surgical Research and Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway 
c Department of Cardiovascular Disease, KU Leuven, Leuven, Belgium 
d Department of Cardiovascular Science, KU Leuven, Leuven, Belgium 
e Department of Cardiology, Baskent University Hospital, Ankara, Turkey 
f Non-Invasive Cardiac Laboratory, Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar 
g Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium 
h Heart and Vascular Theme, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden 

Reprint requests: Erwan Donal, CHU Pontchaillou, 2 Rue Henri Le Guilloux, 35000 Rennes, France.2 Rue Henri Le GuillouxRennes35000France

Abstract

Background

Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches.

Methods

One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients.

Results

From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74–0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75–0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1–10.0; P < .0001; log-rank P < .0001).

Conclusions

Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT.

Le texte complet de cet article est disponible en PDF.

Graphical abstract




Le texte complet de cet article est disponible en PDF.

Highlights

Prediction of the impact of CRT on LV function and outcomes is often difficult.
CRT candidates are a highly heterogeneous population.
ML allows the analysis of a large amount of clinical and imaging data.
ML can identify clusters of patients with different characteristics and prognosis.
RV-derived features are important for the characterization of CRT candidates.

Le texte complet de cet article est disponible en PDF.

Keywords : Cardiac resynchronization therapy, Heart failure, Machine learning, Right ventricle

Abbreviations : ApR, AUC, CRT, FAC, HF, IHD, LBBB, LV, LVEF, ML, NYHA, PAPs, RF, RV, SF, TAPSE


Plan


 Drs. Galle and Le Rolle contributed equally to this work.
 Dr. Aalen was supported by a grant from the Norwegian Health Association. Dr. Larsen was a recipient of a clinical research fellowship from the South-Eastern Norway Regional Health Authority. Dr. Voigt holds a research mandate from the Research Foundation Flanders (FKM1832917N). Dr. Le Rolle was supported by the French National Research Agency (ANR-16-CE19-0008-01, project MAESTRo).
 Conflicts of interest: None.


© 2021  American Society of Echocardiography. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 34 - N° 5

P. 494-502 - mai 2021 Retour au numéro
Article précédent Article précédent
  • Characterization of Responder Profiles for Cardiac Resynchronization Therapy through Unsupervised Clustering of Clinical and Strain Data
  • Alban Gallard, Auriane Bidaut, Arnaud Hubert, Elif Sade, Sylvestre Marechaux, Martha Sitges, Jadranka Separovic-Hanzevacki, Virginie Le Rolle, Elena Galli, Alfredo Hernandez, Erwan Donal
| Article suivant Article suivant
  • Feasibility of Real-Time Myocardial Contrast Echocardiography to Detect Cardiac Allograft Vasculopathy in Pediatric Heart Transplant Recipients
  • Nowell M. Fine, Steven C. Greenway, Sharon L. Mulvagh, Runqing Huang, Shalon A. Maxon, Mary J. Hepinstall, Jason H. Anderson, Jonathan N. Johnson

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.