S'abonner

Lung Ultrasonography for the Diagnosis of SARS-CoV-2 Pneumonia in the Emergency Department - 22/03/21

Doi : 10.1016/j.annemergmed.2020.10.008 
Emanuele Pivetta, MD, PhD a, , Alberto Goffi, MD d, e, Maria Tizzani, MD a, Stefania M. Locatelli, MD a, Giulio Porrino, MD a, Isabel Losano, MD a, Dario Leone, MD a, Gilberto Calzolari, MD a, Matteo Vesan, MD a, Fabio Steri, MD a, Arianna Ardito, MD a, Marialessia Capuano, MD f, Maria Gelardi, MD f, Giulia Silvestri, MD f, Stefania Dutto, MD f, Maria Avolio, MSc b, Rossana Cavallo, MD b, g, Alice Bartalucci, MD a, Cristina Paglieri, MD a, Fulvio Morello, MD, PhD a, g, Lorenzo Richiardi, MD, PhD c, g, Milena M. Maule, PhD c, g, Enrico Lupia, MD, PhD a, g
on behalf of the

Molinette MedUrg Group on Lung Ultrasound

  All members are listed in the Appendix.
Federico Baldassa, MD, Paolo Baron, MD, Giordano Bianchi, MD, Busso V, Andrea Conterno, MD, Paola Del Rizzo, MD, Paolo Fascio Pecetto, MD, Francesca Giachino, MD, Andrea Iannaccone, MD, Patrizia Ferrera, MD, Franco Riccardini, MD, Claudia Sacchi, MD, Michela Sozzi, MD, Silvia Totaro, MD, Pasqualina Visconti, MD, Francesca Risi, MD, Francesca Basile, MD, Denise Baricocchi, MD, Alessia Beux, MD, Valentina Beux, MD, Paolo Bima, MD, Irene Cara, MD, Liliana Chichizola, MD, Francesca Dellavalle, MD, Federico Grosso, MD, Giulia Labarile, MD, Matteo Oddi, MD, Marco Ottino, MD, Ilaria Pia, MD, Virginia Scategni, MD, Astrid Surra, MD

a Division of Emergency Medicine and High Dependency Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy 
b Clinical Microbiology, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy 
c Cancer Epidemiology Unit and CPO-Piemonte, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy 
d Li Ka Shing Knowledge Institute, Department of Critical Care Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada 
e Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada 
f Residency Program in Emergency Medicine, University of Turin, Turin, Italy 
g Department of Medical Sciences, University of Turin, Turin, Italy 

Corresponding Author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Study objective

Accurate diagnostic testing to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is critical. Although highly specific, SARS-CoV-2 reverse transcriptase–polymerase chain reaction (RT-PCR) has been shown in clinical practice to be affected by a noninsignificant proportion of false-negative results. This study seeks to explore whether the integration of lung ultrasonography with clinical evaluation is associated with increased sensitivity for the diagnosis of coronavirus disease 2019 pneumonia, and therefore may facilitate the identification of false-negative SARS-CoV-2 RT-PCR results.

Methods

This prospective cohort study enrolled consecutive adult patients with symptoms potentially related to SARS-CoV-2 infection who were admitted to the emergency department (ED) of an Italian academic hospital. Immediately after the initial assessment, a lung ultrasonographic evaluation was performed and the likelihood of SARS-CoV-2 infection, based on both clinical and lung ultrasonographic findings (“integrated” assessment), was recorded. RT-PCR SARS-CoV-2 detection was subsequently performed.

Results

We enrolled 228 patients; 107 (46.9%) had SARS-CoV-2 infection. Sensitivity and negative predictive value of the clinical–lung ultrasonographic integrated assessment were higher than first RT-PCR result (94.4% [95% confidence interval {CI} 88.2% to 97.9%] versus 80.4% [95% CI 71.6% to 87.4%] and 95% [95% CI 89.5% to 98.2%] versus 85.2% [95% CI 78.3% to 90.6%], respectively). Among the 142 patients who initially had negative RT-PCR results, 21 tested positive at a subsequent molecular test performed within 72 hours. All these false-negative cases were correctly identified by the integrated assessment.

Conclusion

This study suggests that, in patients presenting to the ED with symptoms commonly associated with SARS-CoV-2 infection, the integration of lung ultrasonography with clinical evaluation has high sensitivity and specificity for coronavirus disease 2019 pneumonia and it may help to identify false-negative results occurring with RT-PCR.

Le texte complet de cet article est disponible en PDF.

Plan


 Please see page 386 for the Editor’s Capsule Summary of this article.
 Supervising editor: Michael Gottlieb, MD. Specific detailed information about possible conflict of interest for individual editors is available at editors.
 Author contributions: EP, AG, MMM, and EL conceived the study. EP, AG, LR, MMM, and EL contributed to the study design, wrote the first draft of the article, and prepared figures and tables. EP, LR, and MMM contributed to the statistical analyses. All authors contributed to data acquisition and interpretation of the results and provided critical input into article drafting and revisions. EP takes responsibility for the paper as a whole.
 All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Funding and support: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). The authors have stated that no such relationships exist. The authors received no specific funding for this work.
 Readers: click on the link to go directly to a survey in which you can provide FFVJLV6 to Annals on this particular article.
 A podcast for this article is available at www.annemergmed.com.


© 2020  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 77 - N° 4

P. 385-394 - avril 2021 Retour au numéro
Article précédent Article précédent
  • Peer Reviewers
| Article suivant Article suivant
  • Predicting Progression to Septic Shock in the Emergency Department Using an Externally Generalizable Machine-Learning Algorithm
  • Gabriel Wardi, Morgan Carlile, Andre Holder, Supreeth Shashikumar, Stephen R. Hayden, Shamim Nemati

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.