S'abonner

Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study - 22/10/20

Doi : 10.1016/S1473-3099(20)30553-3 
Hamada S Badr, PhD a, Hongru Du, MS b, Maximilian Marshall, MS b, Ensheng Dong, MS b, Marietta M Squire, MS b, Lauren M Gardner, PhD b,
a Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA 
b Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA 

* Correspondence to: Dr Lauren M Gardner, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore 21218, MD, USA Department of Civil and Systems Engineering Johns Hopkins University Baltimore MD 21218 USA

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Summary

Background

Within 4 months of COVID-19 first being reported in the USA, it spread to every state and to more than 90% of all counties. During this period, the US COVID-19 response was highly decentralised, with stay-at-home directives issued by state and local officials, subject to varying levels of enforcement. The absence of a centralised policy and timeline combined with the complex dynamics of human mobility and the variable intensity of local outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the USA a challenge.

Methods

We used daily mobility data derived from aggregated and anonymised cell (mobile) phone data, provided by Teralytics (Zürich, Switzerland) from Jan 1 to April 20, 2020, to capture real-time trends in movement patterns for each US county, and used these data to generate a social distancing metric. We used epidemiological data to compute the COVID-19 growth rate ratio for a given county on a given day. Using these metrics, we evaluated how social distancing, measured by the relative change in mobility, affected the rate of new infections in the 25 counties in the USA with the highest number of confirmed cases on April 16, 2020, by fitting a statistical model for each county.

Findings

Our analysis revealed that mobility patterns are strongly correlated with decreased COVID-19 case growth rates for the most affected counties in the USA, with Pearson correlation coefficients above 0·7 for 20 of the 25 counties evaluated. Additionally, the effect of changes in mobility patterns, which dropped by 35–63% relative to the normal conditions, on COVID-19 transmission are not likely to be perceptible for 9–12 days, and potentially up to 3 weeks, which is consistent with the incubation time of severe acute respiratory syndrome coronavirus 2 plus additional time for reporting. We also show evidence that behavioural changes were already underway in many US counties days to weeks before state-level or local-level stay-at-home policies were implemented, implying that individuals anticipated public health directives where social distancing was adopted, despite a mixed political message.

Interpretation

This study strongly supports a role of social distancing as an effective way to mitigate COVID-19 transmission in the USA. Until a COVID-19 vaccine is widely available, social distancing will remain one of the primary measures to combat disease spread, and these findings should serve to support more timely policy making around social distancing in the USA in the future.

Funding

None.

Le texte complet de cet article est disponible en PDF.

Plan


© 2020  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 20 - N° 11

P. 1247-1254 - novembre 2020 Retour au numéro
Article précédent Article précédent
  • Taking science talks online
  • Peter Ranscombe
| Article suivant Article suivant
  • Observations of the global epidemiology of COVID-19 from the prepandemic period using web-based surveillance: a cross-sectional analysis
  • Fatimah S Dawood, Philip Ricks, Gibril J Njie, Michael Daugherty, William Davis, James A Fuller, Alison Winstead, Margaret McCarron, Lia C Scott, Diana Chen, Amy E Blain, Ron Moolenaar, Chaoyang Li, Adebola Popoola, Cynthia Jones, Puneet Anantharam, Natalie Olson, Barbara J Marston, Sarah D Bennett

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.