S'abonner

Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study - 24/09/20

Doi : 10.1016/S1473-3099(20)30457-6 
Adam J Kucharski, PhD a, , Petra Klepac, PhD a, b, Andrew J K Conlan, PhD c, Stephen M Kissler, PhD d, Maria L Tang, MMath b, Hannah Fry, PhD e, Julia R Gog, PhD b, W John Edmunds, PhD a
on behalf of the

CMMID COVID-19 working group

Jon C Emery, Graham Medley, James D Munday, Timothy W Russell, Quentin J Leclerc, Charlie Diamond, Simon R Procter, Amy Gimma, Fiona Yueqian Sun, Hamish P Gibbs, Alicia Rosello, Kevin van Zandvoort, Stéphane Hué, Sophie R Meakin, Arminder K Deol, Gwen Knight, Thibaut Jombart, Anna M Foss, Nikos I Bosse, Katherine E Atkins, Billy J Quilty, Rachel Lowe, Kiesha Prem, Stefan Flasche, Carl A B Pearson, Rein M G J Houben, Emily S Nightingale, Akira Endo, Damien C Tully, Yang Liu, Julian Villabona-Arenas, Kathleen O’Reilly, Sebastian Funk, Rosalind M Eggo, Mark Jit, Eleanor M Rees, Joel Hellewell, Samuel Clifford, Christopher I Jarvis, Sam Abbott, Megan Auzenbergs, Nicholas G Davies, David Simons

a Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK 
b Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK 
c Department of Veterinary Medicine, University of Cambridge, Cambridge, UK 
d Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA 
e Centre for Advanced Spatial Analysis, University College London, London, UK 

* Correspondence to: Dr Adam J Kucharski, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK Centre for Mathematical Modelling of Infectious Diseases London School of Hygiene & Tropical Medicine London WC1E 7HT UK

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Summary

Background

The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures—including novel digital tracing approaches and less intensive physical distancing—might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence.

Methods

For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40 162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies.

Results

We estimated that combined isolation and tracing strategies would reduce transmission more than mass testing or self-isolation alone: mean transmission reduction of 2% for mass random testing of 5% of the population each week, 29% for self-isolation alone of symptomatic cases within the household, 35% for self-isolation alone outside the household, 37% for self-isolation plus household quarantine, 64% for self-isolation and household quarantine with the addition of manual contact tracing of all contacts, 57% with the addition of manual tracing of acquaintances only, and 47% with the addition of app-based tracing only. If limits were placed on gatherings outside of home, school, or work, then manual contact tracing of acquaintances alone could have an effect on transmission reduction similar to that of detailed contact tracing. In a scenario where 1000 new symptomatic cases that met the definition to trigger contact tracing occurred per day, we estimated that, in most contact tracing strategies, 15 000–41 000 contacts would be newly quarantined each day.

Interpretation

Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimated that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number lower than 1 in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control of severe acute respiratory syndrome coronavirus 2 transmission.

Funding

Wellcome Trust, UK Engineering and Physical Sciences Research Council, European Commission, Royal Society, Medical Research Council.

Le texte complet de cet article est disponible en PDF.

Plan


© 2020  The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 20 - N° 10

P. 1151-1160 - octobre 2020 Retour au numéro
Article précédent Article précédent
  • Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study
  • Qin-Long Jing, Ming-Jin Liu, Zhou-Bin Zhang, Li-Qun Fang, Jun Yuan, An-Ran Zhang, Natalie E Dean, Lei Luo, Meng-Meng Ma, Ira Longini, Eben Kenah, Ying Lu, Yu Ma, Neda Jalali, Zhi-Cong Yang, Yang Yang
| Article suivant Article suivant
  • Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study
  • Yang Wang, Chunyan Xu, Rong Zhang, Yiqiang Chen, Yingbo Shen, Fupin Hu, Dejun Liu, Jiayue Lu, Yan Guo, Xi Xia, Junyao Jiang, Xueyang Wang, Yulin Fu, Lu Yang, Jiayi Wang, Juan Li, Chang Cai, Dandan Yin, Jie Che, Run Fan, Yongqiang Wang, Yan Qing, Yi Li, Kang Liao, Hui Chen, Mingxiang Zou, Liang Liang, Jin Tang, Zhangqi Shen, Shaolin Wang, Xiaorong Yang, Congming Wu, Shixin Xu, Timothy R Walsh, Jianzhong Shen

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.