S'abonner

Clinical and transmission dynamics characteristics of 406 children with coronavirus disease 2019 in China: A review - 25/07/20

Doi : 10.1016/j.jinf.2020.04.030 
Yang Zhen-Dong a, , Zhou Gao-Jun a , Jin Run-Ming b , Liu Zhi-Sheng c , Dong Zong-Qi c , Xie Xiong d , Song Guo-Wei e
a Department of Respiratory Allergy, Beijing Jindu Children's Hospital, Beijing 102208, China 
b Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China 
c Wuhan Children's Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China 
d Department of Pediatrics, Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei, China 
e Department of Emergency, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China 

Corresponding author: Yang Zhen-Dong Prof, Beijing Jindu Children's Hospital, 308 huilongguan east street, changping district, Beijing 102208, China..Beijing Jindu Children's Hospital308 huilongguan east street, changping districtBeijing102208China

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Highlights

This article analyzes the demographic, epidemiological, clinical, laboratory and CT image data of 406 children with COVID-19.
The clustered incidence of children's families is a dynamic transmission feature. There are more children than adults with asymptomatic infections, with milder conditions, faster recovery, and a better prognosis. These characteristics are the clinical features of children with COVID-19.
Only 55 of the 406 cases were tested by anal swab virus for nucleic acid, 45 of which were positive, accounting for 81.8% of stool samples.
Some concealed morbidity characteristics also bring difficulties to the early identification, prevention and control of COVID-19.
Efforts should be made to prevent children from becoming a hidden source of transmission in kindergartens, schools or families.

Le texte complet de cet article est disponible en PDF.

Abstract

Objective

Chinese pediatricians are working on the front line to fight COVID-19. They have published a great amount of first-hand clinical data. Collecting their data and forming a large sample for analysis is more conducive to the recognition, prevention and treatment of coronavirus disease 2019 in children. The epidemic prevention and control experience of Chinese pediatricians should be shared with the world.

Methods

By searching Chinese and English literature, the data of 406 children with COVID-19 in China were analyzed.

Results

It was found that the clustered incidence of children's families is a dynamic transmission feature; the incidence is low; asymptomatic infections and mild cases account for 44.8%, with only 7 cases of critical illness; laboratory examination of lymphocyte counts is not reduced, as it is for adults; chest CT findings are less severe than those for adults. These presentations are the clinical features of COVID-19 in children. Only 55 of the 406 cases were tested by anal swab for virus nucleic acid, 45 of which were positive, accounting for 81.8% of stool samples.

Conclusion

There are more children than adults with asymptomatic infections, milder conditions, faster recovery, and a better prognosis. Some concealed morbidity characteristics also bring difficulties to the early identification, prevention and control of COVID-19. COVID-19 screening is needed in the pediatric fever clinic, and respiratory and digestive tract nucleic acid tests should be performed. Efforts should be made to prevent children from becoming a hidden source of transmission in kindergartens, schools or families. Furthermore, China's experience in treating COVID-19 in children has led to faster recovery of sick children.

Le texte complet de cet article est disponible en PDF.

Keywords : Coronavirus disease 2019, Transmission Ddynamics, Clinical Characteristics, Children, China


Plan


© 2020  The British Infection Association. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 81 - N° 2

P. e11-e15 - août 2020 Retour au numéro
Article précédent Article précédent
  • Dynamic profile for the detection of anti-SARS-CoV-2 antibodies using four immunochromatographic assays
  • Baptiste Demey, Nagib Daher, Catherine François, Jean-Philippe Lanoix, Gilles Duverlie, Sandrine Castelain, Etienne Brochot
| Article suivant Article suivant
  • Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis
  • Zhaohai Zheng, Fang Peng, Buyun Xu, Jingjing Zhao, Huahua Liu, Jiahao Peng, Qingsong Li, Chongfu Jiang, Yan Zhou, Shuqing Liu, Chunji Ye, Peng Zhang, Yangbo Xing, Hangyuan Guo, Weiliang Tang

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.