S'abonner

Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study - 08/06/20

Doi : 10.1016/S1473-3099(20)30162-6 
Joel R Koo, BSc a, Alex R Cook, PhD a, , Minah Park, PhD a, Yinxiaohe Sun, MSc a, Haoyang Sun, BSc a, Jue Tao Lim, MSc a, Clarence Tam, PhD a, b, Borame L Dickens, PhD a
a Saw Swee Hock School of Public Health, National University of Singapore, Singapore 
b London School of Hygiene & Tropical Medicine, London, UK 

* Correspondence to: Dr Alex R Cook, Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549 Saw Swee Hock School of Public Health National University of Singapore Singapore 117549

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Summary

Background

Since the coronavirus disease 2019 outbreak began in the Chinese city of Wuhan on Dec 31, 2019, 68 imported cases and 175 locally acquired infections have been reported in Singapore. We aimed to investigate options for early intervention in Singapore should local containment (eg, preventing disease spread through contact tracing efforts) be unsuccessful.

Methods

We adapted an influenza epidemic simulation model to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population. Using this model, we estimated the cumulative number of SARS-CoV-2 infections at 80 days, after detection of 100 cases of community transmission, under three infectivity scenarios (basic reproduction number [R0] of 1·5, 2·0, or 2·5) and assuming 7·5% of infections are asymptomatic. We first ran the model assuming no intervention was in place (baseline scenario), and then assessed the effect of four intervention scenarios compared with a baseline scenario on the size and progression of the outbreak for each R0 value. These scenarios included isolation measures for infected individuals and quarantining of family members (hereafter referred to as quarantine); quarantine plus school closure; quarantine plus workplace distancing; and quarantine, school closure, and workplace distancing (hereafter referred to as the combined intervention). We also did sensitivity analyses by altering the asymptomatic fraction of infections (22·7%, 30·0%, 40·0%, and 50·0%) to compare outbreak sizes under the same control measures.

Findings

For the baseline scenario, when R0 was 1·5, the median cumulative number of infections at day 80 was 279 000 (IQR 245 000–320 000), corresponding to 7·4% (IQR 6·5–8·5) of the resident population of Singapore. The median number of infections increased with higher infectivity: 727 000 cases (670 000–776 000) when R0 was 2·0, corresponding to 19·3% (17·8–20·6) of the Singaporean population, and 1 207 000 cases (1 164 000–1 249 000) when R0 was 2·5, corresponding to 32% (30·9–33·1) of the Singaporean population. Compared with the baseline scenario, the combined intervention was the most effective, reducing the estimated median number of infections by 99·3% (IQR 92·6–99·9) when R0 was 1·5, by 93·0% (81·5–99·7) when R0 was 2·0, and by 78·2% (59·0 −94·4) when R0 was 2·5. Assuming increasing asymptomatic fractions up to 50·0%, up to 277 000 infections were estimated to occur at day 80 with the combined intervention relative to 1800 for the baseline at R0 of 1·5.

Interpretation

Implementing the combined intervention of quarantining infected individuals and their family members, workplace distancing, and school closure once community transmission has been detected could substantially reduce the number of SARS-CoV-2 infections. We therefore recommend immediate deployment of this strategy if local secondary transmission is confirmed within Singapore. However, quarantine and workplace distancing should be prioritised over school closure because at this early stage, symptomatic children have higher withdrawal rates from school than do symptomatic adults from work. At higher asymptomatic proportions, intervention effectiveness might be substantially reduced requiring the need for effective case management and treatments, and preventive measures such as vaccines.

Funding

Singapore Ministry of Health, Singapore Population Health Improvement Centre.

Le texte complet de cet article est disponible en PDF.

Plan


© 2020  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 20 - N° 6

P. 678-688 - juin 2020 Retour au numéro
Article précédent Article précédent
  • Estimates of the severity of coronavirus disease 2019: a model-based analysis
  • Robert Verity, Lucy C Okell, Ilaria Dorigatti, Peter Winskill, Charles Whittaker, Natsuko Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick G T Walker, Han Fu, Amy Dighe, Jamie T Griffin, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Anne Cori, Zulma Cucunubá, Rich FitzJohn, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Daniel Laydon, Gemma Nedjati-Gilani, Steven Riley, Sabine van Elsland, Erik Volz, Haowei Wang, Yuanrong Wang, Xiaoyue Xi, Christl A Donnelly, Azra C Ghani, Neil M Ferguson
| Article suivant Article suivant
  • Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study
  • Haiyan Qiu, Junhua Wu, Liang Hong, Yunling Luo, Qifa Song, Dong Chen

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.